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Abstract
Multimodal large language models (LLMs) have demon-
strated significant potential in a wide range of AI applications.
Yet, training multimodal LLMs suffers from low efficiency
and scalability, due to the inherent model heterogeneity and
data heterogeneity across different modalities.

We present DistTrain, an efficient and adaptive framework
to reform the training of multimodal large language models
on large-scale clusters. The core of DistTrain is the disaggre-
gated training technique that exploits the characteristics of
multimodal LLM training to achieve high efficiency and scal-
ability. Specifically, it leverages disaggregated model orches-
tration and disaggregated data reordering to address model
and data heterogeneity respectively. We also tailor system op-
timization for multimodal LLM training to overlap GPU com-
munication and computation. We evaluate DistTrain across
different sizes of multimodal LLMs on a large-scale produc-
tion cluster with thousands of GPUs. The experimental results
show that DistTrain achieves 54.7% Model FLOPs Utilization
(MFU) when training a 72B multimodal LLM on 1172 GPUs
and outperforms Megatron-LM by up to 2.2× on throughput.
The ablation study shows the main techniques of DistTrain
are both effective and lightweight.

1 Introduction
Recent advances in large language models (LLMs) are cat-
alyzing a new wave of AI applications [1]. However, LLMs
are predominantly text-based, restricting their ability to under-
stand and generate multimodal content. Emerging multimodal
LLMs address this gap by integrating various modalities such
as texts, images, and audios into LLMs which significantly
enhances LLM’s applicability. Multimodal LLMs demon-
strate great potential in tasks like image understanding [2–5],
audio comprehension [6, 7], and embodied AI [8, 9]. Many
organizations are actively developing their multimodal LLMs,
such as OpenAI’s GPT-4o [10], Google’s Gemini [11] and
PaLM-E [9], Meta’s Chameleon [12], etc.

Training multimodal LLMs demands vast computational
resources. According to the scaling law [13], model size and
training data volume are crucial for determining model ca-
pabilities. Substantial efforts are invested in training models
with billions of parameters on trillion-scale tokens. For in-
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Figure 1: The architecture of multimodal LLMs.

stance, Meta’s Chameleon [12] is a 34B multimodal LLM
trained on more than 4.8 trillion tokens. Leading organizations
often deploy large-scale clusters, equipped with thousands
of GPUs, for such training tasks. One technical report [14]
reveals that training a GPT-3 175B with 300 billion tokens
costs $4.6 million and lasts one year using 355 V100 GPUs.
Consequently, it is crucial to develop an efficient and scalable
training framework to minimize costs and accelerate training.

Figure 1 depicts the mainstream model architecture of
multimodal LLMs, comprising three primary modules: the
modality encoder, LLM backbone, and the modality genera-
tor [15,16]. These modules are linked by the projector, which
may incorporate MLP or cross-attention layers. The modal-
ity encoder transforms input from various modalities into a
unified embedding space. The embedding vectors are then an-
alyzed by the LLM backbone, a transformer model, to discern
data patterns and inter-modal relationships. Subsequently, the
modality generator translates this processed information back
into coherent outputs tailored to each modality.

Existing LLM training framework, e.g., Megatron-LM [17],
can be extended to train multimodal LLMs by treating the
multimodal modules as additional layers within the LLM.
However, training multimodal LLMs poses two substantial
challenges: model heterogeneity and data heterogeneity. The
fundamental issue of model heterogeneity stems from the
need to process diverse modalities with different modules that
vary dramatically in size and operator complexity. The model
heterogeneity across different modules (i.e., modality encoder,
LLM backbone, and modality generator) introduces severe
pipeline bubbles, resulting in poor GPU utilization. Mean-
while, data heterogeneity bursts onto the scene due to the in-
tricate and unstructured nature of multimodal input data. The
data heterogeneity across different modality data leads to inter-
microbatch and intra-microbatch training stragglers, which
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prolong the training duration and exacerbate the pipeline bub-
bles. These challenges collectively limit the efficiency and
scalability of multimodal LLM training, resulting in MFU as
low as ~20% in production-level training (§8.1).

To this end, we present DistTrain, an efficient and adap-
tive framework to reform the training of multimodal LLMs.
DistTrain achieves state-of-the-art MFU which is close to uni-
modal LLM training and effectively scales to large clusters
with thousands of GPUs. The core principle of DistTrain is
disaggregated training, including GPU training disaggrega-
tion and CPU preprocessing disaggregation, which facilitate
to address model and data heterogeneity respectively.

For model heterogeneity, we meticulously analyze the
pipeline bubbles stemming from model heterogeneity and
identify their root causes (§2.2). The GPU training disag-
gregation of modality encoder, LLM backbone, and modal-
ity generator enables adaptive orchestration across the three
modules in multimodal LLM. Building on this, we propose
disaggregated model orchestration that navigates the com-
plicated design space to choose the optimal resource and
parallelism configurations. This innovative approach mini-
mizes the pipeline bubbles caused by model heterogeneity
and achieves optimal training efficiency.

For data heterogeneity, we categorize the training stragglers
into inter-microbatch and intra-microbatch stragglers (§2.3).
The CPU preprocessing disaggregation allows efficient data
preprocessing (e.g., data decompression and reordering) with
negligible runtime overhead. From this foundation, we incor-
porate disaggregated data reordering into the preprocessing
to strategically reorder training data without additional over-
head. The inter-microbatch reordering algorithm reorders the
data samples to evenly distribute the load across different
data parallelism groups. The intra-microbatch reordering al-
gorithm reorders the microbatches tailored for (interleaved)
1F1B pipeline scheme to minimize the pipeline bubbles. This
two-level approach effectively mitigates data heterogeneity.

In addition, we customize system optimization for multi-
modal LLM training. We implement an in-house collective
communication library, StepCCL, to hide the communication
overhead within the computation.

In summary, we make the following contributions.
• We present DistTrain, an efficient and adaptive framework

to reform the training of multimodal LLMs by addressing
the multimodal heterogeneity. It delivers state-of-the-art
MFU on large-scale clusters with thousands of GPUs.

• We identify and discuss the primary challenges associated
with multimodal LLM training, which are summarized as
model heterogeneity and data heterogeneity.

• We propose disaggregated training for multimodal LLM. It
leverages disaggregated model orchestration and disaggre-
gated data reordering to effectively address model and data
heterogeneity, respectively.

• We implement DistTrain and conduct experiments on our
production cluster with thousands of GPUs. The experi-
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Figure 2: Training multimodal LLMs with Megatron-LM.

mental results show that DistTrain achieves 54.7% MFU
when training a 72B multimodal LLM on 1172 GPUs and
outperforms Megatron-LM by up to 2.2× on throughput.

2 Motivation
2.1 Multimodal Large Language Model Training

Large language model. Large language models (LLMs) [18–
20] have revolutionized natural language processing (NLP)
by achieving state-of-the-art performance on a wide range of
tasks, such as text generation, translation, and summarization.
Many organizations have raced to develop their own LLMs,
such as OpenAI’s GPT-4 [21], Google’s Gemini [11], and
Meta’s Llama [22]. The core architecture of LLMs consists
of a stack of homogeneous transformer layers [18] that use
self-attention mechanisms to capture contextual information
in text. LLMs are pre-trained with unsupervised learning on
large-scale text corpora and then fine-tuned on task-specific
text datasets. The text data is typically tokenized into fixed-
length sequences, which are then fed into the model to learn
the underlying patterns. The training process involves weeks
or even months of computation on dedicated AI clusters with
thousands of GPUs. According to one technical report [14],
training 175B GPT-3 requires 4.6 million dollars. Optimizing
the training process is essential to reduce the stupendous cost
and accelerate the model deployment.

Multimodal LLM. The unimodal LLMs are limited to pro-
cessing text data, which restricts their applicability to multi-
modal tasks (e.g., image understanding and generation). As a
result, multimodal LLMs have emerged to address this limita-
tion by integrating multiple modalities (e.g., images, audios,
and videos) into the advanced LLMs [15], which support
multimodal inputs and outputs during LLM generation. For
example, GPT-4o [10] garners widespread attention by facil-
itating more natural interactions with humans through both
visual and auditory modalities. Moreover, the predominantly
text-based data in human societies is finite [23]. Harness-
ing multimodal data is inevitable to continually expand and
enhance LLM capabilities.

Figure 1 illustrates the model architecture of a multimodal
LLM, which consists of three modules: a modality encoder,
an LLM backbone, and a modality generator [15, 16, 24]. The
modality encoder transforms input data from different modal-
ities (e.g., ViT [25] for images and Beats [26] for audios) into
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Figure 3: Forward time under different input configurations.

an intermediate representation (i.e., an embedding tensor),
which is then projected into a unified embedding space across
modalities with input projection layers (e.g., MLP and cross-
attention). The LLM backbone, typically a transformer model
(e.g., GPT [19,20] and Llama [22]), processes the multimodal
embeddings to discern the intricate data patterns and inter-
modal relationships. The output data of the LLM backbone is
subsequently refined by output projection layers, which tailor
the information for each modality. Finally, the modality gen-
erator (e.g., Diffusion [27] for images and AudioLDM [28]
for audios) transforms the LLM-processed information back
into the respective modal outputs for generation.

Multimodal LLM training necessitates training all three
modules simultaneously. Additionally, during different train-
ing phases, specific modules are frozen to stabilize training
loss and enhance model effectiveness [15]. Regarding the
training data, the input sequence comprises text, image, and
audio tokens. These data from different modalities are tok-
enized into subsequences which are then interleaved to form
fixed-length training sequences [12]. In cases where the input
sequence falls short, it is padded with zero tokens for batching.
Distinct modality sub-sequences are demarcated by special
tokens and processed through modality-specific encoders.

Training framework. To train the multimodal large language
model with large-scale clusters, the de facto solution is to
leverage Megatron-LM, a highly efficient and robust training
framework for large-scale transformer models. Megatron-LM
employs a unified parallelism strategy for the entire model.
It combines tensor parallelism (TP) and pipeline parallelism
(PP) to distribute the model parameters across multiple GPUs.
TP divides the model parameter within each layer, while PP
partitions parameters between layers. It also leverages data
parallelism (DP) to distribute the training data. For multi-
modal LLMs, Megatron-LM is easily extended to integrate
additional multimodal modules. Figure 2 illustrates the train-
ing topology of multimodal LLMs with Megatron-LM. Specif-
ically, Megatron-LM treats the multimodal modules as addi-
tional layers within the LLM and incorporates additional PP
stages to accommodate the modality encoder and generator.
The same TP strategy used in the LLM backbone is applied
to these two multimodal modules. If the modality encoder
and generator are not large enough, they are replicated across
the GPUs in the TP group to maximize resource utilization.
As for DP, Megatron-LM applies the same DP strategy to the

(a)

(b)

Encoder
LLM

Generator

a b
a b

Encoder
LLM

Generator

Bubbles

a b
c

c

Bubblesc

a b c
a b c

a b c

Figure 4: Two types of pipeline bubbles due to model heterogeneity.

multimodal modules as the LLM backbone. The projector is
co-located with the modality encoder and generator and is
replicated across the GPUs in the TP group.

However, this training framework introduces significant
computation imbalance stemming from model heterogeneity
and data heterogeneity due to its rigid model orchestration
method. (i.e., the multimodal modules share the same DP and
TP strategies with LLM backbone). It only achieves ~20%
MFU (§8.1) which is significantly lower than the MFU of
~50% observed in training unimodal (text-only) LLMs [29].

2.2 Model Heterogeneity

The first challenge is the computation imbalance arising
from model heterogeneity. Each module in multimodal LLMs
bears different computational demands due to varying oper-
ators and inputs. For instance, ViT, as modality encoder, is
constructed with narrow transformer layers (i.e., small hid-
den size), whereas LLM backbone is built on broader trans-
former layers (i.e., large hidden size). Meanwhile, Diffusion,
as modality generator, utilizes a combination of convolution
and attention layers (i.e., U-Net). This architectural diversity
results in distinct computation time for each module. Figure 3
shows varying forward time under different input configura-
tions with Megatron-LM. We demonstrate one PP stage of
LLM backbone with PP size of 10 and TP size of 8. The first
configuration parameter is the number of images in the 8K
input sequence, and the second is the image resolution. The
time differs markedly across different configurations.

The computational imbalance between modules leads to
two types of pipeline bubbles in pipeline parallelism. The
first arises in the modality encoder and generator stages, as
shown in Figure 4(a), resulting from their inadequate utiliza-
tion of assigned GPU resources. The second type emerges
in the stages of the LLM backbone, as shown in Figure 4(b).
This is because the intensive computational demands of the
encoder and generator extend their stage durations. Due to the
pipeline dependency, the LLM stages are forced to wait for
the multimodal stage to complete, thereby creating pipeline
bubbles. The latter problem is particularly pronounced during
large-scale multimodal LLM training, where the bulk of GPU
resources are allocated to the LLM backbone. These pipeline
bubbles, stemming from model heterogeneity, substantially
diminish the MFU during the training.

2.3 Data Heterogeneity

The second challenge is the computational imbalance stem-
ming from data heterogeneity. Each input sequence (i.e., train-
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Figure 5: Data heterogeneity in multimodal LLM training.
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Figure 6: Intra-microbatch straggler (among DP groups).

ing sample) for multimodal LLM training consists of inter-
leaved modality subsequences that exhibit highly skewed dis-
tributions. Focusing on images and texts, we perform data
characterization on the LAION-400M dataset [30], an open-
source collection of images paired with text captions. Each
image (i.e., one image subsequence) is segmented into 16×16
patches, and each patch is tokenized into one image token.
The texts are tokenized through Llama tokenizer. The image
tokens are interleaved with text tokens to create an 8K-token
input sequence for training. As shown in Figure 5(a) and Fig-
ure 5(b), the sizes of text and image subsequences display
distinctly skewed distributions. We further analyze the count
of modality subsequence per training sample using image as
an example. The count of image subsequences per training
sample, shown in Figure 5(c), also demonstrates a skewed
distribution. Different sample size (i.e., modality tokens per
sample) leads to varying computation time in the modality
encoder and generator stages.

Such data heterogeneity results in both intra-microbatch
and inter-microbatch stragglers within the pipeline paral-
lelism (PP) stages of the modality encoder and generator.
These stragglers exacerbate the computational imbalances
and further reduce the GPU utilization. It is noted that all
microbatches within LLM backbone have the same compu-
tation time since the sequence length is fixed. We do not
consider data heterogeneity between global batches, as each
global batch contains numerous randomly shuffled training
samples (e.g., thousands with a large DP size), which effec-
tively smooths out the data heterogeneity.

Intra-microbatch straggler. Intra-microbatch straggler oc-
curs when particularly large training samples decelerate train-
ing, as DP groups handle variably-sized training samples. Il-
lustrated in Figure 6, the first DP group (DP1) processes two
large training samples within two microbatches. In contrast,
the second DP group (DP2) processes two smaller samples in
the same microbatches, completing them more swiftly. Con-
sequently, DP1 lags behind and becomes the straggler, which
delays the overall training process.

Straggler

Encoder
LLM(a)

(b)

a b
a b

a b
a b

Encoder
LLM

Figure 7: Inter-microbatch straggler.

Inter-microbatch straggler. Inter-microbatch straggler
emerges from pipeline imbalances between microbatches.
As depicted in Figure 7, the first pipeline stage is the modality
encoder followed by one LLM backbone stage. Figure 7(a)
illustrates the pipeline without data heterogeneity, where the
modality encoder processes each microbatch with consistent
time. In contrast, Figure 7(b) depicts the pipeline with data
heterogeneity, where the forward time of the modality encoder
varies markedly across microbatches. The straggler (i.e., the
microbatch a) significantly delays the training process of the
subsequent PP stages, leading to a large pipeline bubble.

3 DistTrain Overview

We present DistTrain, an efficient and adaptive framework to
reform the training of multimodal LLMs by addressing the
multimodal heterogeneity. DistTrain proposes disaggregated
training for multimodal LLM to achieve high efficiency and
scalability. DistTrain eliminates the model heterogeneity by
disaggregated model orchestration (§5) and harnesses the
data heterogeneity by disaggregated data reordering (§6). In
addition, DistTrain adopts some system optimizations tailored
for multimodal LLM training (§7). Here we provide a brief
overview of DistTrain as Figure 8 shows.

DistTrain manager. Before training, DistTrain employs a
training manager to determine the resource allocation and
parallelism strategy for each module in multimodal LLMs.
This scheduler first gathers the model architecture and train-
ing configuration (e.g., global batch size) from the user and
randomly samples a subset of training data to analyze the
data distribution. Utilizing this information, it runs a series
of benchmarking training trials and constructs a performance
profiler with linear interpolation to estimate each module’s
computation and communication time. Based on the profiling
results, the training manager decides the optimal resource
allocation and parallelism strategy with disaggregated model
orchestration for one specific training task, as detailed in §5.
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DistTrain initializer. DistTrain then initializes the GPU train-
ing disaggregation for modality encoder, LLM backbone, and
modality generator, respectively. DistTrain allocates different
numbers of GPUs to each parallelism unit. Each unit then
establishes the specific communication group. The unit loads
the model checkpoint from distributed file system and shards
the model parameters and optimization states. Finally, Dist-
Train conducts several communication trials to warm up the
system and test connectivity.

DistTrain runtime. At runtime, the dedicated CPU nodes
(i.e., CPU preprocessing disaggregation) retrieve training sam-
ples from the distributed file system for preprocessing. It
performs disaggregated data reordering to reorder the train-
ing samples within one global batch without breaking the
synchronous training semantics [31]. This reordering effec-
tively eliminates both inter-microbatch and intra-microbatch
data heterogeneity, as detailed in §6. In each iteration, the
main training process receives the preprocessed data asyn-
chronously from the CPU nodes. The data then undergoes
sequentially through the modality encoder, LLM backbone,
and modality generator in the training pipeline. Finally, it
synchronizes the gradients and model parameters through
the all-gather operation, employing the ZERO-1 optimiza-
tion [32] and mixed precision training [33]. Additionally,
DistTrain adopts a dedicated process to periodically and asyn-
chronously save the model checkpoint to the distributed file
system for fault tolerance.

4 Disaggregated Training
To address the model and data heterogeneity in multimodal
LLM training, we first introduce DistTrain’s core principle:
disaggregated training. It includes GPU training disaggrega-
tion and CPU preprocessing disaggregation. GPU training
disaggregation provides opportunities for adaptive model or-
chestration across the three modules to address the model
heterogeneity. CPU preprocessing disaggregation facilitates
data preprocessing to address data heterogeneity with negligi-
ble runtime overhead.

Modality
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Generator

PorjectorsPorjectors

Figure 9: GPU training disaggregation in DistTrain.

4.1 GPU Training Disaggregation

Figure 9 demonstrates the training topology of disaggregated
GPU training in DistTrain. Different from the rigid model or-
chestration in Megatron-LM (i.e., Figure 2), DistTrain is able
to adaptively adjust the resource allocation and parallelism
strategy. For instance, DistTrain allocates 4 GPUs (DP=2 and
TP=2) to the modality encoder, 12 GPUs (DP=3 and TP=4)
to the LLM backbone per PP stage, and 4 GPUs (DP=1 and
TP=4) to the modality generator. Additionally, the projector
layers are co-located with either the modality encoder or gen-
erator, with their number of replicas adapting as needed. We
implement GPU training disaggregation through a dedicated
module, i.e., parallelism unit.

Parallelism unit. At training initialization, we need to es-
tablish the communication group according to the resource
allocation and parallelism strategy. DistTrain introduces a
module, parallelism unit, composed of one or more PP stages.
Each unit can adopt its own DP and TP strategies and form
a specific communication group. Inter-unit connections are
facilitated by a communication broker, which bridges PP com-
munication across parallelism units. Users are only required
to specify the DP and TP configurations for each parallelism
unit, and DistTrain automatically sets up the communication
group and communication broker. DistTrain treats the modal-
ity encoder, LLM backbone, and modality generator as three
individual parallelism units. The detailed implementation of
parallelism unit is discussed in §7.

4.2 CPU Preprocessing Disaggregation

When training multimodal LLMs, training samples often com-
bine lightweight text with heavyweight multimodal data. The
latter significantly increases data preprocessing time. For ex-
ample, a typical training sample could include a 256-word
text sequence and ten 1024×1024 RGB images. The text is
just kilobytes, whereas the images are total of 120 megabytes.
Preprocessing (e.g., decompression, resizing, and reordering)
such samples can take several seconds and interfere with the
co-located training process. DistTrain disaggregates the CPU
data preprocessing from the GPU training process with a
producer-consumer model. The producer, operating on dedi-
cated CPU nodes, fetches data from the distributed file system
and preprocesses training data asynchronously with the GPU
training process. The consumer, i.e., the main training process,
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receives this preprocessed data for training. The producer and
consumer communicate through RPC calls, and use RDMA
network for lower latency if available. This disaggregation
guarantees that the CPU preprocessing does not interfere with
the GPU training process and achieves negligible data prepro-
cessing overhead.

5 Addressing Model Heterogeneity
Disaggregated training enables disaggregated model orches-
tration among the different modules based on the training
workload. We first formulate the problem of disaggregated
model orchestration to minimize the training time per iter-
ation. Then, we present the detailed algorithm to optimally
address the problem caused by model heterogeneity.

5.1 Problem Formulation

With disaggregated training, we are able to adaptively orches-
trate the three modules. The problem now lies in determining
the optimal resource allocation and parallelism strategy to
minimize the training time per iteration. Exhaust search is
infeasible due to the large search space, particularly in large
cluster. One strawman solution is to allocate the resources
proportional to the model flops of each module. However,
this method falls short as it overlooks complex patterns in
parallelism training. Before diving into disaggregated model
orchestration, we first formulate the optimization problem.

LLM backbone. We begin by formulating the LLM back-
bone, focusing on the forward pass as the backward pass time
mirrors this. In LLM training, microbatch size is set to one to
prevent GPU memory overflow. Assume the global batch size
for one iteration as BS and the TP size of the LLM backbone
as T Plm. Let the PP and DP size of LLM backbone be PPlm
and DPlm. The number of GPUs allocated to LLM backbone
is y = T Plm×DPlm×PPlm. Let the forward time (including
communication time) of the entire LLM be Clm(T Plm), where
Clm represents forward time function. Therefore, the forward
time of one PP stage for one microbatch is Tlm = Clm(T Plm)

PPlm
.

Besides, the number of microbatches per iteration is BS
DPlm

.

Modality encoder and generator. In DistTrain, the modality
encoder is regarded as a parallelism unit with PP size PPme.
Let the TP size be T Pme and the DP size be DPme. The number
of GPUs allocated to modality encoder is x = T Pme×DPme×
PPme. The microbatch size is DPlm

DPme
which is determined by

the LLM backbone. Let the forward time (including commu-
nication time) of the entire modality encoder be Cme(T Pme).
The forward time of one PP stage for one microbatch in the
modality encoder is Tme =

DPlm
DPme
× Cme(T Pme)

PPme
= DPlm×T Pme

x ×
Cme(T Pme). Similarly, the forward time of one PP stage in the
modality generator is Tmg =

DPlm×T Pmg
z ×Cmg(T Pmg), where

z is the number of GPUs allocated to modality generator.

Objective function. Based on the preceding analysis, we next
define the objective function for the optimization problem,

Generator

LLM

Encoder a
a
b c d e
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Figure 10: Multimodal LLM training pipeline.

i.e., the training time of one iteration. As shown in Figure 10,
we demonstrate the pipeline of forward pass in multimodal
LLM training. The LLM backbone comprises two PP stages,
whereas the modality encoder and generator each consist of
one PP stage. The training process is categorized into two
phases: warm-up phase and steady phase. The warm-up phase
spans from the initiation to the completion of the first micro-
batch to populate the pipeline. This phase’s duration is cal-
culated as Twarmup = Tlm×PPlm +Tme×PPme +Tmg×PPmg,
which is formulated as follows.

Twarm =Clm(T Plm)+
DPlm

DPme
×Cme(T Pme)

+
DPlm

DPmg
×Cmg(T Pmg) (1)

The steady phase’s duration is dominated by the maximal
computation time among PP stages, which is calculated as
Tsteady = max(Tlm,Tme,Tmg)× ( BS

DPlm
− 1), where BS

DPlm
is the

number of microbatches per iteration. It is formulated as:

Tsteady

= max


DPlm×T Plm

y ×Clm(T Plm),
DPlm×T Pme

x ×Cme(T Pme),
DPlm×T Pmg

z ×Cmg(T Pmg)

× (
BS

DPlm
−1) (2)

Therefore, the objective function is to minimize Titer =
Twarmup +Tsteady. For the backward pass, the objective func-
tion remains analogous to that of the forward pass. Adjust-
ments are made by changing Clm,Cme, and Cmg from forward
time functions to the sum functions of forward and backward
time. This formulation holds for GPipe and 1F1B. We will
retrofit the formulation to adapt to VPP later. TP communi-
cation is incorporated into the functions Clm,Cme, and Cmg,
which are calibrated through interpolation from actual trials.
The communication time of DP and PP is modeled as the
communication volume divided by the bandwidth. If the DP
sizes are fixed, the DP communication time remains constant.
For PP, the communication time equals the PP size multiplied
by the communication time of a single layer’s output tensor.

Constraints. Besides the objective function, we must consider
constraints to ensure training feasibility. The first constraint is
the resource constraint. The number of GPUs allocated to each
module should be x+y+z≤N where N is the total number of
GPUs in the cluster. The second constraint involves memory.
We consider LLM backbone. Memory allocation involves four
parts: model parameters, gradients, optimizer states, and acti-
vation states. The memory of model parameters and gradients
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Algorithm 1 Optimal disaggregated model orchestration.
1: function MODELORCHESTRATION
2: opt_resource← /0, opt_parallelism← /0, opt_time←+∞

3: for parallelism in Possible_Parallelism_Set do
4: iter_time, resource← SOLVE(parallelism)
5: if iter_time < opt_time then
6: opt_time← iter_time, opt_resource← resource
7: opt_parallelism← parallelism
8: return opt_resource, opt_parallelism

on one GPU is calculated as: P
PPlm×T Plm

= DPlm×P
y , where P

denotes total memory for the LLM parameters and gradients.
The memory for optimizer states on one GPU (with ZeRO-1
optimization) is: S

y , where S denotes the total memory for
the optimizer states. ZeRO-1 partitions the optimizer states
across DP groups. The peak memory for activation states on
one GPU is: DPlm×L×PPlm

y , with L representing the memory
needed for one microbatch of activation states across the en-
tire LLM. In 1F1B, the first PP stage requires storage for PPlm
microbatches of activation states. We eschew using GPipe in
DistTrain since GPipe consumes more memory. The memory
constraint ensures the sum of the four memory parts on one
GPU doesn’t exceed GPU capacity. As for modality encoder
and generator, the formulation is similar.

5.2 Disaggregated Model Orchestration

The optimization problem is non-convex, with x,y,z, and the
DP, TP sizes as positive variables. BS is predefined by the
user. Solving this with an exhaust search algorithm to explore
all possible variable values is impractical due to the extensive
search space, particularly in large clusters. Designing an ef-
ficient algorithm that quickly identifies the optimal resource
allocation and parallelism strategy is a significant challenge.

Convex optimization. Our key insight is to decompose the
non-convex optimization problem into a series of simplified
convex problems with variables x,y,z (i.e., resource alloca-
tion). We confine the TP size to [1,2,4,8] on an NVIDIA
GPU node with 8 GPUs and adjust the DP size as a factor
of BS to balance the computation across DP groups. The PP
size of the LLM backbone is calculated as y

DPlm×T Plm
. The

set of possible parallelism strategies is a manageable and fi-
nite set, i.e., the Cartesian product of TP and DP size. This
allows us to enumerate all feasible TP and DP sizes and trans-
form the original optimization problem into a set of simplified
problems. In the simplified problem, the objective function is
maximal and additional of the functions: 1

x , 1
y and 1

z , where
x,y,z are positive. Therefore, the objective function is convex.
Similarly, the constraint functions are also convex. As a re-
sult, the simplified optimization problem is convex and can
be efficiently solved to optimality by existing solvers [34, 35].
The algorithm, detailed in Algorithm 1, efficiently finds the
optimal resource allocation and parallelism strategy.

Virtual pipeline parallelism (i.e., interleaved 1F1B) reduces
the warm-up time by dividing model into finer-grained vir-

1 3

2 4

MicrobatchDP1
DP2 Data Sample

Time

Figure 11: Intra-microbatch reordering.

tual PP (VPP) stages. Each PP stage contains VPP-size VPP
stages. In the warm-up phase, each PP stage launches the
computation of one VPP stage, and the warm-up time is di-
vided by VPP-size. To align our formulation with VPP, we
proportionally reduce the warm-up time based on VPP-size.

6 Addressing Data Heterogeneity
Disaggregated training enables preprocessing the training
data with negligible runtime overhead. Based on this, we in-
troduce disaggregated data reordering, seamlessly integrated
into data preprocessing, to address data heterogeneity without
additional overhead. Initially, we present intra-microbatch
reordering to eliminate stragglers across DP groups. We then
introduce inter-microbatch reordering to minimize pipeline
bubbles caused by the straggler microbatches. The combina-
tion of the two reordering, i.e., disaggregated data reordering,
effectively addresses the data heterogeneity. We emphasize
that these two reordering algorithms are integrated into the dis-
aggregated data preprocessing. This ensures that the complex
reordering does not interfere with the GPU training process.

6.1 Intra-microbatch Reordering

Insight. To address the first subproblem, intra-microbatch
stragglers, we identify the straggler by pinpointing the DP
group with the largest training samples. As illustrated in Fig-
ure 6, the first DP group becomes a straggler as it contains
the two largest training samples. To neutralize this imbalance,
we propose reordering the training samples within the global
batch by size. Specifically, as depicted in Figure 11, we re-
order the training samples into the sequence [1,3,2,4]. This
strategy effectively distributes the computational load more
evenly and improves the scalability. It eliminates the straggler
without breaking the synchronous training semantics [31], as
the reordering occurs within an individual global batch.

Intra-microbatch Reordering. Leveraging this insight, we
propose intra-microbatch reordering to balance computational
load and improve the overall scalability. Formally, the chal-
lenge involves minimizing the maximum computation time
among DP groups. This problem corresponds to the NP-hard
problem, multiway number partitioning [36], which aims to
minimize the largest sum. There is no known polynomial-
time algorithm capable of determining the optimal solution.
Given the substantial batch size in production training, the
algorithm employed must be lightweight and efficient. Conse-
quently, we adopt the greedy number partitioning algorithm,
which guarantees an approximation ratio of ≤ 4

3 [37]. The de-
tailed algorithm is summarized in Algorithm 2. The function
INTRAREORDER receives the n original training samples
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Figure 12: 1F1B pipeline scheme.

Algorithm 2 Intra-batch reordering.
1: function INTRAREORDER({d1, ...,dn}, m)
2: sorted_samples←{d1, ...,dn}, ret_samples← /0, Groups← /0

3: Sort sorted_samples in ascending order based on di.size
4: for i = 1→ m do
5: Groupi← /0, Groups.append(Groupi)

6: for i = 1→ n do
7: min_index← argmin j ∑d∈Group j d.size
8: Groups[min_index].append(sorted_samples[i])
9: for i = 1→ m do

10: ret_samples.extend(Groups[i])
11: return ret_samples

and DP size m. This algorithm first sorts the training samples
in ascending order by the sample size (line 3). Then, it loops
over the training samples and assigns the sample to the DP
group with the current lowest computational load (line 6-8). It
then returns the reordered samples (line 9-11). The algorithm
has a time complexity of O(n logn+m×n).

6.2 Inter-microbatch Reordering

The second subproblem is the inter-microbatch straggler. As
we discussed in §2.3, data heterogeneity leads to varied com-
putation times across microbatches within the modality en-
coder and generator. The straggler microbatch prolongs the
training by creating large pipeline bubbles. In the context of
1F1B pipeline scheme, the overall iteration time is primar-
ily governed by pipeline bubbles and the computation time
at the first PP stage of the modality encoder, as illustrated
in Figure 12. Let the PP size be p and the number of mi-
crobatches be l (p = 4 and l = 6 in Figure 12). Typically,
l is larger than p to reduce the proportion of time spent in
the warm-up and cool-down phases. We abstract an inno-
vative concept, pipeline intervals, at the first PP stage. As
shown in Figure 12, these intervals are typically filled with
forward pass, except for the last p−1 intervals (i.e., interval4,
interval5, and interval6). Straggler microbatches in either the
encoder or generator prolong these intervals or increase the
unfilled area (i.e., bubble).

Insights. We leverage two insights to solve this problem. The
first insight involves minimizing the volume of intervals that
are not filled. As shown in Figure 12, the last p−1 intervals
(i.e., interval4 to interval6) remain unfilled. These intervals
become the pipeline bubbles and prolong the training iteration.
We observe a positive correlation between the volume of
intervali and the size of the ith microbatch. The size refers to

Algorithm 3 Inter-batch reordering.
1: function INTERREORDER({m1, ...,ml}, p)
2: ret_mb← /0, mb←{m1, ...,ml}
3: ret_mb.append(MIN(mb)), mb.remove(MIN(mb))
4: rear_mb← SELECTMIN(mb,p−1), mb.remove(rear_mb)
5: for i = 1→ l− p do
6: intervali← GETINTERVAL(ret_mb, i)
7: if i == 1 then
8: cur_mb← SELECTCLOSEST(mb,p−1, intervali)
9: else

10: cur_mb← SELECTCLOSEST(mb,1, intervali)
11: ret_mb.extend(cur_mb), mb.remove(cur_mb)
12: ret_mb.extend(rear_mb)
13: return ret_mb

the computation time of the microbatch in modality encoder
and generator. For instance, interval4 is significantly larger
than interval5 and interval6 since the 4th microbatch is the
largest. By strategically reordering the training samples to
position the smallest p−1 microbatches at the end, we are
able to reduce these unfilled intervals (i.e., pipeline bubbles).

The second insight involves minimizing the unfilled area
of left intervals. The left intervals (i.e., interval1 to interval3)
are filled with the forward pass. As shown in Figure 12, the
first interval is filled with by the 2nd to pth forward passes.
For subsequent intervals, intervali is filled by the (i+ p−1)th
forward pass. By evaluating the volume of intervali, we place
the microbatches, whose forward time most closely matches
this volume, at the corresponding position, to minimize the
unfilled area (i.e., pipeline bubbles).

Inter-microbatch Reordering. Based on the two insights,
we design runtime inter-microbatch reordering to minimize
the pipeline bubbles. This algorithm is designed for 1F1B
pipeline scheme. We will retrofit the algorithm to VPP (i.e.,
interleaved 1F1B) later. Algorithm 3 summarizes the pseudo
code. The function INTERREORDER receives the original
order of microbatches and the PP size p. It stores reordered mi-
crobatches in ret_mb and pending microbatches in mb (line 2).
Early in the process, the smallest microbatch is placed at first
to activate all pipeline stages promptly (line 3). Subsequently,
it selects the smallest p−1 microbatches and places them at
the end to minimize unfilled intervals (line 4 and line 12). It
then loops over the remaining microbatches (line 5-11). In
each loop iteration, it calculates the volume of the interval
through the function GETINTERVAL. For the first interval,
it selects p−1 microbatches that closely match the interval
volume in sum forward time; for others, it selects a single mi-
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crobatch whose forward time aligns closely with the interval
volume. This loop ensures maximal filling of the remaining
intervals, which minimizes pipeline bubbles.

The functions SELECTMIN and SELECTCLOSEST op-
erate with a time complexity of O(l). The function
GETINTERVAL calculates interval volumes using the current
order ret_mb. This calculation is facilitated by a dynamic pro-
gramming algorithm that utilizes a recursive formula derived
from pipeline dependencies. Specifically, each microbatch’s
start time depends on two factors: the completion of the pre-
ceding microbatch on the same device and the availability of
input data from the upstream microbatch. Consequently, the
end time of each microbatch is determined by the maximum
of these two dependencies plus its own computation time.
This dynamic programming algorithm exhibits a complexity
of O(p) per function invocation. The algorithm has a time
complexity of O(l× (l + p)).

Virtual pipeline parallelism (i.e., interleaved 1F1B) also
follows the one forward and one backward pipeline scheme to
reduce the memory footprint. The fundamental insights of our
algorithm apply universally to any 1F1B-based pipeline, in-
cluding VPP. We adapt the algorithm by computing multiple
(i.e., VPP size) intervals and filling them with the correspond-
ing number of forward passes from a single microbatch.

7 System Implementation and Optimization
We implement DistTrain with 6.3K lines of code in Python
and C++, and integrate it with Megatron-LM [17], a state-of-
the-art training framework for large language models. Dist-
Train is able to support multimodal LLM training with a
variety of modalities on a large-scale GPU cluster (e.g., thou-
sands of GPUs used in §8). DistTrain leverages a distributed
file system to store the training data and model checkpoints.
It handles failures by automatically recovering the training
process from the latest checkpoint.

DistTrain manager. DistTrain’s training manager, imple-
mented as a Python script on a dedicated CPU node, for-
mulates the disaggregated model orchestration problem using
Disciplined Convex Programming [38]. It employs the CVX
solver [39] to efficiently solve this problem within millisec-
onds. The manager then records the optimal resource alloca-
tion and parallelism strategy to a configuration file, which the
Kubernetes controller uses to launch the training task.

DistTrain initializer. DistTrain incorporates parallelism unit
that manages specific parallelism strategies for each mod-
ule in multimodal LLMs. Parallelism unit is initialized using
PyTorch Distributed [40] library with NCCL as the communi-
cation backend, except for the TP communication where we
use StepCCL instead. DistTrain shards the model parameters
in accordance with the established parallelism strategy.

Parallelism unit. As we discussed in §4.1, the GPU training
disaggregation is implemented through a specific module:
parallelism unit. When initializing the distributed training,

AG
GEMM

(a) Strawman
comp. stream
comm. stream

(b) StepCCL

comp. stream
comm. stream AG AG AG

GEMM GEMM GEMM
time
saved

layout
remap

Figure 13: Overlapping communication and computation.

DistTrain first establishes the communication groups within
one parallelism unit. Each GPU process has a global rank and
a local rank within the unit, which facilitates the distributed
initialization. Then, it initializes the communication broker to
establish the PP communication between adjacent parallelism
units. All communication traffic between parallelism units is
routed via the communication broker.

We implement the communication broker by modifying
the batched send and receive operations in Megatron-LM
to separate operations. This allows flexible communication
between multiple upstream and downstream GPU processes.
The communication broker adjusts the communication data
by concentrating and scattering the data as needed while main-
taining the data order. Strategically located on the GPU of
the last PP stage in the upstream unit or the first PP stage
in the downstream unit, the communication broker avoids
additional communication overhead. Besides, the number of
communication brokers between two units is determined by
the greatest common divisor of the two parallelism units’ DP
sizes to maximize the communication bandwidth. Moreover,
in the Megatron-LM, the reliance on synchronous communi-
cation compels upstream stages to pause until downstream
stages fully receive the data. This introduces unnecessary de-
pendencies in the pipeline. To alleviate this, we implement
asynchronous send operations that eliminate these superflu-
ous dependencies and redesign the communication topology
to prevent potential deadlocks.

Mitigating TP overhead with StepCCL. Tensor Paral-
lelism (TP) is commonly adopted to facilitate training large
Transformer-based models with multiple GPUs connected
with high bandwidth (e.g., with NVLinks). Specifically, TP
divides the linear layers, into smaller sub-modules, which are
then distributed across the GPUs. After parallel computation,
all GPUs perform collective communication to aggregate data
and produce identical results. The TP communication over-
head severely degrades overall performance, especially on
A800 and H800 GPUs with restricted NVLink bandwidth.

We implement the communication overlap with an in-house
collective communication library called StepCCL to reduce
the TP overhead. StepCCL is a PyTorch custom plugin that
performs cross-GPU collective communication, including
allgather, reduce-scatter, and allreduce, which is similar to
NCCL. However, NCCL occupies several CUDA Streaming
Multiprocessors (SMs) for executing its communication ker-
nel and is known to harm the performance of its concurrent
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GEMM (matrix multiplication) [41]. To solve this, StepCCL
leverages the DMA engine directly to perform data transmis-
sion without using any SM at all. This enables StepCCL and
GEMM to run simultaneously on a GPU without slowing
down each other. This cornerstone facilitates our subsequent
development of communication overlap.

Figure 13 shows an example of how StepCCL works in
overlapping the allgather (AG) operation with GEMM. We
start by decomposing the single GEMM and the correspond-
ing communication into several smaller pairs. Each small
communication operation starts sequentially on a communi-
cation stream, with its paired GEMM executed on the default
computation stream. The communication overhead is fully
hidden except for the first allgather.1 After all GEMMs fin-
ish, we perform an extra layout remapping operation (usually
with negligible overhead) to ensure identical results with the
baseline. Figure 14 describes the details of the layout remap
process. In some rare cases during backward propagation, we
find the remap overhead is high due to certain model dimen-
sion. To mitigate this, we further overlap the remap with the
computation of the weight gradients, so eventually we nearly
get the full performance gain of the communication overlap.

Finally, although the overlap idea is also studied in many re-
lated works [42–44], we highlight the key differences of ours.
Unlike prior work that fuses GEMM with TP communication
into one CUDA kernel [42, 43], we choose a modular design
and do not use fusion for more flexibility. For example, when
TP communication is longer than GEMM, fusing them cannot
fully hide the communication overhead. However, with the
modular design, we are able to hide the communication with
other modules without dependency (e.g., in cross-attention),
which is not possible with the fused implementation. This en-
ables broader adoption of StepCCL in many other scenarios.

8 Evaluation
In this section, we first use large-scale experiments to demon-
strate the overall performance improvements of DistTrain
over Megatron-LM. Next, we use microbenchmarks to deep
dive into DistTrain and show the effectiveness of each compo-
nent in DistTrain. Finally, we provide a case study to further
elucidate DistTrain’s capabilities.

1If the number of allgather/GEMM is large enough, the only allgather
in the critical path should have negligible overhead. But dividing a large
GEMM into finer granularity sometimes could lead to overall slowdown. In
practice, the number is actually configurable.

Models # of Hidden FFN Hidden # of # of
Layers Size Size Heads Groups

Llama3-7B 32 4096 11008 32 32
Llama3-13B 40 5120 13824 40 40
Llama3-70B 80 8192 28672 64 8

Table 1: LLM backbone configurations.

Setup. Our experiments are conducted on a production GPU
cluster for multimodal LLM training, with each node equipped
with eight NVIDIA A800 GPUs, 1TB of memory, and 96 vC-
PUs. GPUs within one node are interconnected by 300GB/s
(bidirectional) NVLink, while nodes are connected by 4*200
Gbps RDMA network based on RoCEv2 with rail-optimized
topology. The overall experiments use up to 1296 GPUs, and
the microbenchmark utilizes up to 98 GPUs. We use PyTorch
2.1.2 and NVIDIA CUDA 12.2 for our evaluation.

Models. For LLM backbone, we choose the representative
LLM architecture, Llama3 [22], which is widely used in both
academia and industry. Table 1 lists the detailed model con-
figurations. As for the modality, we focus on images and
texts. DistTrain is also compatible with other modalities.
For modality encoder and modality generator, we use ViT-
Huge [45] (0.63B) and Stable-Diffusion 2.1 [46] (1B) re-
spectively. These two models are widely used for image un-
derstanding and generation. The three LLM backbones (i.e.,
Llama3-7B, Llama3-13B, and Llama3-70B) are paired with
ViT-Huge and Stable-Diffusion to form multimodal LLMs
designated as MLLM-9B, MLLM-15B, and MLLM-72B. For
large multimodal LLM (i.e., MLLM-72B), we use high image
resolution (i.e., 1024×1024) for generation since the large
LLM is able to process more context information. For small
models, we use low image resolution (i.e., 512×512).

Datasets. For our experiments, we use the representative open-
source dataset, LAION-400M. We generate training data by
interleaving the image and text subsequences, forming in-
put sequences up to 8192 tokens long. This dataset is also
employed in our production multimodal LLM training. As
detailed in §2.3, each training sample includes a varying num-
ber of image tokens and text tokens, which introduces data
heterogeneity in multimodal LLM training.

Metrics. We use the Model FLOPs Utilization (MFU) as
the primary metric to evaluate DistTrain. MFU measures the
percentage of GPU FLOPs that are effectively utilized during
model training. We also use the training throughput (TPT.) to
evaluate the training speed of DistTrain. Since DistTrain and
Megatron-LM may utilize different numbers of GPUs due to
varying model orchestration strategies, we also indicate the
number of GPUs used in the throughput charts.

8.1 Overall Performance

Setup. We first compare the overall performance of DistTrain
against Megatron-LM on a large-scale GPU cluster (up to
1296 GPUs). We retrofit Megatron-LM to support multimodal
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Figure 15: The overall MFU of DistTrain and Megatron-LM.

LLM training by integrating modality encoder and genera-
tor into the training pipeline. Megatron-LM employs rigid
model orchestration as described in §2.1. In Megatron-LM,
we set the PP size of the LLM backbone to 1, 2, and 10 for
Llama3-7B, Llama3-13B, and Llama3-70B. PP size is set to
1 for modality encoder and generator. TP size is set to 8. As
for DistTrain, the parallelism strategy is determined by disag-
gregated model orchestration. In our experiments, one GPU
is able to facilitate training ViT and Stable-Diffusion. We
replicate the encoder and generator across the GPUs within
the TP group to process different images, whereas TP itself is
not used. We set global batch size to 1920.

The experimental results are shown in Figure 15 and Fig-
ure 16. Figure 15 shows the MFU. Figure 16 shows the train-
ing throughput and marks the number of GPUs used in each
experiment. The different GPU numbers are due to the varying
model orchestration strategies of DistTrain and Megatron-LM.
We summarize the experiment as follows.
• As shown in Figure 15, DistTrain achieves 51.8%-54.7%

MFU in large-scale multimodal LLM training. This per-
formance closely approximates that of state-of-the-art uni-
modal (i.e., text) LLM training [29], which demonstrates
the effectiveness of DistTrain in addressing the model and
data heterogeneity in multimodal LLM training.

• DistTrain significantly outperforms Megatron-LM, deliver-
ing 1.7-2.8× the MFU and 1.7-2.2× the training throughput
when training MLLM-9B and MLLM-15B with a sim-
ilar number of GPUs. These performance gains largely
stem from DistTrain’s disaggregated model orchestration.
Megatron-LM’s rigid strategy often leads to GPU underuti-
lization, since it assigns too many GPUs to the modality
encoder and generator. In contrast, DistTrain adaptively
adjusts model orchestration based on specific model and
data demands. Additionally, DistTrain’s disaggregated data
reordering technique further boosts efficiency.

• In MLLM-72B training scenario, DistTrain also outper-
forms Megatron-LM by 1.2× on MFU and 1.3× on train-
ing throughput with a similar number of GPUs. The high
image resolution prolongs the execution time of the multi-
modal module, which introduces pipeline bubbles in LLM
backbone. DistTrain addresses this by allocating additional
GPUs to these modules to balance the pipeline. The dis-
aggregated data reordering strategy continues to diminish
data heterogeneity, thereby increasing training efficiency.
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Figure 16: The overall throughput of DistTrain and Megatron-LM.
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Figure 17: Effectiveness of disaggregated model orchestration.

8.2 Deep Dive into DistTrain

In this subsection, we perform microbenchmarks to evaluate
the effectiveness of each DistTrain’s component. Our experi-
ments utilize up to 98 NVIDIA A800 GPUs. We set the global
batch size to 128, 64, and 40 for MLLM-9B, MLLM-15B,
and MLLM-72B, respectively.

8.2.1 Disaggregated Model Orchestration

We measure the MFU and training throughput of DistTrain
and other model orchestration strategies, including a com-
parison with Megatron-LM and a ratio-based approach. The
ratio-based strategy allocates GPUs according to the computa-
tional demands (flops) of each module. We also annotate the
total number of GPUs utilized in the throughput chart. The
experimental results are shown in Figure 17. DistTrain consis-
tently outperforms the baseline strategies, achieving 1.3-2.7×
higher MFU and 1.4-2.7× higher training throughput. Al-
though the ratio-based strategy outperforms Megatron-LM’s
rigid strategy, it still lags behind DistTrain since it neglects
the intricate performance model (§5.1) of multimodal LLM
training. DistTrain’s disaggregated model orchestration opti-
mally balances computational loads across the three modules
and achieves high resource utilization.

We also evaluate the running time of DistTrain’s disaggre-
gated model orchestration under different training settings,
as detailed in Table 2. The algorithm completes in under one
second. The overhead is negligible compared to the days or
even weeks required for overall training.

8.2.2 Disaggregated Data Reordering

We evaluate the effectiveness of DistTrain’s disaggregated
data reordering by comparing it against the random order,
while keeping other components the same. The effectiveness
is gauged through metrics such as MFU and training through-
put (TPT.). We use the optimal resource allocation and paral-
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Model # of Global Algorithm
GPUs Batch Size Overhead

MLLM-72B 1296 1920 922ms
MLLM-72B 648 960 641ms
MLLM-72B 324 480 441ms
MLLM-72B 112 240 133ms

Table 2: Overhead of disaggregated model orchestration.

lelism strategy decided by DistTrain’s disaggregated model
orchestration. Given that the model orchestration strategy re-
mains unchanged, the number of GPUs is not shown. The ex-
perimental settings are the same as those in §8.2.1. The results
are shown in Figure 18. DistTrain consistently outperforms
the baseline, achieving 1.03-1.11× higher MFU and training
throughput. The performance gap becomes more pronounced
as the model size decreases. This is because the smaller model
size leads to a higher data parallelism (DP) size, which causes
more inter-microbatch heterogeneity. In essence, DistTrain’s
disaggregated data reordering effectively mitigates data het-
erogeneity and enhances the training efficiency. We do not
measure the running time of the reordering algorithm as it
operates on dedicated CPU nodes asynchronously. It does not
interfere with the GPU training process. The only overhead is
the network delay which is evaluated in §8.3.

8.3 Case Study

In this subsection, we first evaluate DistTrain under different
frozen training settings. We then evaluate the overhead of
CPU preprocessing disaggregation and the effectiveness of
StepCCL in mitigating the TP overhead.

8.3.1 Frozen Training

We conduct a frozen training experiment under four specific
training settings: complete module freezing, exclusive en-
coder training, exclusive LLM training, and exclusive gener-
ator training. We keep training the projectors. In these sce-
narios, frozen modules neither compute weight gradients nor
update weights. All other experimental setup aligns with those
detailed in §8.2. We evaluate the MFU and training through-
put (TPT.) of DistTrain compared to Megatron-LM. The ex-
perimental results are presented in Figure 19 and Figure 20.
DistTrain consistently outperforms Megatron-LM across all
frozen training configurations, achieving 1.4-2.9× higher
MFU and 1.2-2.9× higher training throughput. This pro-
nounced performance gap underscores the challenges posed
by Megatron-LM’s rigid model orchestration in complex train-
ing environments. In contrast, DistTrain adaptively adjusts
model orchestration based on training settings and consis-
tently achieves high resource utilization.

Overhead of data preprocessing. We conduct an experiment
to evaluate the overhead of data preprocessing, including de-
compression and reordering. Setting the DP size to one, we
measure the average data preprocessing time per iteration
on the GPU training side. We then compare data preprocess-
ing time with and without CPU preprocessing disaggregation
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Figure 18: Effectiveness of disaggregated data reordering.

and use varying numbers of images and different image res-
olutions for one training iteration. The results, depicted in
Figure 21, indicate that the disaggregation significantly re-
duces preprocessing time from seconds to milliseconds. The
first parameter in the x-axis represents the number of images,
while the second parameter denotes the image resolution. In
production training (§8.1), iteration times range from seconds
to tens of seconds. Preprocessing overhead, initially counted
in seconds, significantly interferes with training. With disag-
gregated data preprocessing, the overhead reduces to millisec-
onds, which is negligible relative to total iteration time.

Mitigating TP overhead with StepCCL. To evaluate the
effectiveness of StepCCL in mitigating the TP overhead, we
conduct an experiment that measures the iteration time of the
LLM backbone with training of one single PP stage (i.e., one
minimal TP group) under various TP sizes. We compare the
iteration time with and without StepCCL enabled. The results
are shown in Figure 22. StepCCL significantly reduces the
iteration time by overlapping the TP communication with
computation. It outperforms the baseline by 1.1-1.17× when
the TP size is 4 and 1.15-1.17× when the TP size is 8. The
gains are more pronounced at large TP size, where communi-
cation overhead is more substantial. These findings confirm
that StepCCL effectively mitigates TP overhead.

9 Discussion
Parallelism optimization. Many studies [47–49] refine paral-
lelism strategies for deep learning models, but they fall short
for multimodal LLMs due to their expansive search spaces
and large cluster requirements. These methods separately op-
timize different strategies, resulting in inefficient parallelism
Additionally, these methods generally assume data homogene-
ity, standardizing computations across all training samples.
This assumption does not hold for multimodal LLMs due to
the data heterogeneity in modality inputs of each sample. In
contrast, DistTrain leverages the specific training pattern of
multimodal LLMs, creating a customized model orchestration
problem that integrates tensor, pipeline, and data parallelism
simultaneously. Besides, DistTrain leverages disaggregated
data reordering to harness the data heterogeneity.

Sequence and expert parallelism. Sequence parallelism
(SP) [50] is designed to partition the training sequence into
multiple subsequences for parallel training. It addresses the
challenges of processing long sequences in LLMs. Expert par-
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Figure 19: MFU under frozen training setting.
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Figure 20: Throughput under frozen training setting.
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allelism (EP) [51], specifically devised for mixture-of-experts
(MoE) LLMs [52], enables parallel training of multiple feed-
forward network (FFN) experts. These parallelism strategies
are orthogonal to multimodal LLM training. In DistTrain,
both SP and EP are integrated into the training framework.
DistTrain treats SP and EP sizes as predefined parameters in
the disaggregated model orchestration optimization problem.

10 Related Work
LLM training. Many efforts have been made to optimize
the training of LLMs from system perspectives. For LLM
pretrain, Megatron-LM [17] and DeepSpeed-Megatron [53]
propose customized 3D-parallelism and are de facto standards
for training large LLMs. DeepSpeed-ZeRO [32] and Pytorch-
FSDP [54] reduce redundant memory consumption in data
parallelism. HPN [55] proposes a new dual-ToR network ar-

chitecture trailed for LLM training to reduce ECMP conflict.
A set of works [29, 42–44, 56] overlap the communication
and computation operators in LLM training. Fault tolerance
through replication and checkpoint is advanced in large train-
ing clusters by studies [29, 57]. Efforts like [58–60] further
optimize recovery process in cloud spot instance scenarios.
These system optimizations of LLM training are orthogonal
to DistTrain. They overlook the model and data heterogene-
ity in multimodal LLMs. DistTrain also integrates several of
these optimizations in training the LLM backbone.

Multimodal model training. Small multimodal models (e.g.,
CLIP [61] and LiT [62]) have been widely studied in re-
cent years. Many system optimizations have been proposed
to train such multimodal models efficiently. DistMM [63]
tackles model heterogeneity by introducing modality-aware
placement and partitioning to evenly distribute workload.
GraphPipe [64] presents graph pipeline parallelism, address-
ing graph dependencies in multimodal models to minimize
pipeline bubbles. Yet, these advancements primarily enhance
small multimodal models trained on tens of GPUs. They fall
short for scaling up to meet the demands of integrating multi-
modal models with LLMs which necessitate training across
thousands of GPUs. This gap underpins the motivation be-
hind DistTrain, designed to meet the unique challenges of
multimodal large language model training.

Multimodal LLM serving. LLM serving has been widely
studied in recent years. Orca [65], FastServe [66], and
VTC [67] propose iteration-level scheduling algorithms to
improve the serving quality. DistServe [68] and Splitwise [69]
propose disaggregated serving for prefill and decoding to im-
prove the serving throughput. vLLM [70], RAGCache [71],
and SGLang [72] propose prefix caching to reuse the KV
tensors. However, the serving of multimodal LLMs remains
under-explored. DistTrain’s core insights (e.g., disaggrega-
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tion) are applicable to multimodal LLMs serving. Our future
work will delve into the specific challenges posed by multi-
modal LLMs serving systems.

11 Conclusion
We present DistTrain, an efficient and adaptive framework to
reform the training of multimodal LLMs. We identify the key
challenges in training multimodal LLMs, i.e., model hetero-
geneity and data heterogeneity. DistTrain introduces disaggre-
gated training to address these challenges, including disaggre-
gated model orchestration to address model heterogeneity and
disaggregated data reordering to address data heterogeneity.
We evaluate DistTrain on production cluster with thousands of
GPUs and show that it achieves 54.7% MFU and outperforms
Megatron-LM by up to 2.2× on throughput.
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