Check for
Updates

Janus: A Unified Distributed Training Framework for Sparse

Mixture-of-Experts Models

Juncai Liu
Tsinghua University
liuje19@tsinghua.org.cn

Jessie Hui Wang
Tsinghua University and
Zhongguancun Laboratory

Yimin Jiang
ByteDance
jymthu@gmail.com

jessiewang@tsinghua.edu.cn

ABSTRACT

Scaling models to large sizes to improve performance has led a trend
in deep learning, and sparsely activated Mixture-of-Expert (MoE)
is a promising architecture to scale models. However, training MoE
models in existing systems is expensive, mainly due to the All-to-All
communication between layers.

All-to-All communication originates from expert-centric para-
digm: keeping experts in-place and exchanging intermediate data to
feed experts. We propose the novel data-centric paradigm: keeping
data in-place and moving experts between GPUs. Since experts’
size can be smaller than the size of data, data-centric paradigm can
reduce communication workload. Based on this insight, we develop
Janus. First, Janus supports fine-grained asynchronous communi-
cation, which can overlap computation and communication. Janus
implements a hierarchical communication to further reduce cross-
node traffic by sharing the fetched experts in the same machine.
Second, when scheduling the “fetching expert” requests, Janus im-
plements a topology-aware priority strategy to utilize intra-node
and inter-node links efficiently. Finally, Janus allows experts to
be prefetched, which allows the downstream computation to start
immediately once the previous step completes.

Evaluated on a 32-A100 cluster, Janus can reduce the traffic up
to 16X and achieves up to 2.06x speedup compared with current
MOoE training system.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Com-
puting methodologies — Machine learning.

KEYWORDS

Distributed training, mixture of experts, deep learning

ACM Reference Format:

Juncai Liu, Jessie Hui Wang, and Yimin Jiang. 2023. Janus: A Unified Dis-
tributed Training Framework for Sparse Mixture-of-Experts Models. In ACM
SIGCOMM 2023 Conference (ACM SIGCOMM °23), September 10-14, 2023,
New York, NY, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3603269.3604869

This work is licensed under a Creative Commons Attribution International 4.0 License.

ACM SIGCOMM °23, September 1014, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604869

486

Transfolrmer block

Sequence \
of tokens N
“ Attention FEN Next block
A 4
(a) Transformer
MoE block
Sequence =
of tokens { Expertl k|
m) || Attention Gate Y& E;‘gg:g % Next block
Q LExpertd {
(b) MoE Expert layer
Sequence _Worker-0 Expert layer
of tokens _ ' Expertl k
m)|| Attention Gate / Expert2 Next block
- %ﬁht block

— [A——
All-to-All All-to-All

(c) Expert parallelism

Figure 1: Transformer, MoE and Expert parallelism (blue arrows
represent assignment of tokens to experts)

1 INTRODUCTION

Recent trends in deep learning have shown that the capacity of
a DNN model is typically improved as its number of parameters
increases [7, 11], thus leading to better model quality. Based on
this observation, giant models with billions of parameters are often
used in the frontiers of Computer Vision (CV) and Natural Lan-
guage Processing (NLP) [15, 22]. While the improvement of large
models’ quality (e.g., accuracy) is significant, the computation cost
of training them, however, is extremely high. This hinders large
models from being more widely adopted.

Following the basic principle of using massive parameters while
preserving constant computation cost, sparsely activated mod-
els have recently been introduced. Among them, the Mixture-of-
Experts (MoE) structure is now one of the most popular ways
to implement sparse activation [15, 33] since it does not degrade
model capacity like quantization and knowledge distillation. As
demonstrated in Figure 1(b), for each input, instead of activating all
parameters (i.e. all of experts, which are Feed-Forward Networks
typically), an MoE model intentionally selects just a few of them
for computation. This leads to sub-linear scaling of FLOPS needed
with model size. Recent literature has proven the potential of sparse
MoE models versus their dense counterparts [5].

Despite its significant potential in increasing model quality, train-
ing a large sparse MoE model is still non-trivial. As the number of

https://doi.org/10.1145/3603269.3604869
https://doi.org/10.1145/3603269.3604869
https://doi.org/10.1145/3603269.3604869
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604869&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

experts increases, the model eventually will exceed the memory
limit of a single GPU. To train large MoE models, expert parallelism
is proposed. As demonstrated in Figure 1(c), the expert layer in an
MOoE block is split and placed on multiple GPUs. Therefore, during
model computation, the All-to-All communication has to be added
before and after the expert layer to exchange the intermediate re-
sults between all GPUs. Unfortunately, the All-to-All operation is
known to be expensive [19] and becomes the primary bottleneck
in MoE training.

Given the fact that All-to-All communication is time-consuming
during model training, we take a step back and rethink the essential
communication pattern during the training of MoE models. Existing
training systems keep experts in-place and exchange intermediate
data to feed the experts. We name this paradigm as expert-centric,
where experts are statically placed while intermediate data is moved.
On the contrary, one can also keep intermediate data static and move
experts between GPUs. For simplicity, we name this paradigm as
data-centric !, which is a novel yet equivalent way to implement
the necessary communication for training MoE models.

Comparing the current expert-centric paradigm and the newly
presented data-centric paradigm, we find that the latter has an
advantage on reducing communication workload. The communica-
tion size of transferring experts, under certain conditions, could be
much smaller than the expert-centric way. This gap can be enlarged
when the model dimension is relatively small while the amount of
input data is large (e.g., large batch size). The communication work-
load also becomes balanced among workers since each expert is of
the same size. Besides, data-centric paradigm potentially enables
two opportunities.

o First, unlike the expert-centric paradigm whose All-to-All com-
munication is strictly blocking (synchronous), moving experts
between GPUs can be achieved using non-blocking (or asyn-
chronous) communication primitives such as push and pull. This
further boosts performance since we no longer need to explicitly
synchronize all workers (GPUs) during an iteration. Besides, the
expert pulled by a worker can be reused by other workers in the
same machine. The reusability provides an opportunity to reduce
cross-machine traffic.

e Second, since expert weights are deterministic during an iteration
of the model training, prefetching experts is possible and it allows
us to further improve the overlap between computation and
communication. Prefetching technique is not applicable in the
expert-centric paradigm, since intermediate data can only be
populated on the fly.

While data-centric is a promising paradigm for accelerating MoE
model training, as noted before, we find this idea is not revealed
in any popular MoE frameworks such as DeepSpeed [31] and Tu-
tel [17]. One possibility is that the data-centric based communica-
tion only outperforms the expert-centric way under certain model
configs. Hence, we holistically combine the two mechanisms and
design Janus?, an MoE training system that is communication-
optimal.

Inspired by the opportunities provided by data-centric paradigm,
Janus improves system efficiency in the data-centric paradigm from

In the NLP literature, the intermediate data is also termed as tokens.
2God of gates and transitions, representing the behavior of mixture of experts.

487

Juncai Liu et al.

Worker 0 Worker 1 Worker 0 | | Worker 1
]
[outo || | out2 | [outo | |
| Outl | | Out3 | [out1l | !
S " |

AlltoAll communication
~

Expert 0 Expert 1
| Token 1 | [TokenO | | gewwiwwm / | ooolans
| Token 2 | ' Token3 | | (SSAEERS/) asnlnl
A

AlltoAll communication

| Token 0 | | Token 2 |
| Token 1 | | Token 3 |

(a) Expert-centric (b) Data-centric

Figure 2: Expert-centric vs Data-centric

three perspectives. First, Janus treats the request of fetching each
expert as an individual task, instead of sending expert requests in
batches. In this way, Janus enables asynchronous communication,
i.e.,, a worker can execute the computation of one expert while
receiving another expert at the same time, which means parts of
the communication time can be hidden by the computation time of
experts. Besides, it also enables Janus to implement a hierarchical
fetch operation, ie., requests for the same expert from workers in
the same machine can be merged and thus the cross-node traffic is
further reduced. Second, to alleviate the contention of bandwidth
of bottlenecks, Janus designs a topology-aware priority strategy to
carefully arrange the priority of requests of fetching experts. Third,
Janus leverages the bandwidth in idle time slots to prefetch experts,
which enables that the computation of an expert layer can start
immediately once the computation of the former layer completes.
Briefly, we make the following contributions:

e We propose a novel communication paradigm for the training
of MoE models: data-centric, which could reduce traffic volumes
in communication and make the communication workload bal-
anced.

e We schedule the requests of fetching experts in a fine-grained
manner to enable asynchronous communication and hierarchical
communication, which help us hide communication time and
reduce cross-node traffic.

o We design a topology-aware priority strategy to avoid resource
contention in intra-node expert exchanges and improve the uti-
lization of the involved links.

e We design a prefetch mechanism, which helps us smooth the
bursts of communication traffic and utilize the bandwidth in idle
time slots.

We evaluate Janus in a commodity GPU cluster with 32 A100
GPUs. Evaluation results show that Janus can reduce the traffic up
to 16x in the All-to-All communication and achieve up to 2.06x
speedup on the iteration time in practice, compared with state-of-
the-art MoE frameworks.

2 BACKGROUND
2.1 Transformer and MoE Model

Transformer [36] is the state-of-art structure to process sequence
and consists of many blocks. Figure 1(a) shows the structure of a

Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

Transformer block. A Transformer block consists of two parts: an
Attention layer and a Feed-Forward Network (i.e. FFN). Typically,
an MoE block can derive from a Transformer block.

MoE model has been proven to have a strong capability in various
areas [15][19][8]. An MoE model can consist of both Transformer
blocks and MoE blocks. Figure 1(b) shows the structure of an MoE
block. There is a gate and an expert layer in each MoE block and
there are many experts (typically FFNs) in the expert layer. When a
token enters an MoE block and is processed after the Attention layer,
the gate will allocate it to several experts which are specialized in
processing it. The number of allocated experts for each token is
controlled by one parameter of the gate, i.e., topK.

2.2 Expert Parallelism

The size of an MoE model could be so large that it exceeds the
capacity of a single GPU. To train a large-scale MoE model on
GPUs, expert parallelism [15][19] was proposed and widely used.
Figure 1(c) shows the concept of expert parallelism. In expert paral-
lelism, the expert layer is divided into several parts and allocated
to GPUs. Each GPU holds some experts in the expert layer, and
different GPUs hold different experts. For other parts of an MoE
model (i.e., the Attention layer and the gate in Figure 1(c)), each
GPU holds an independent copy.

Current implementation of expert parallelism is expert-centric
by default. Figure 2(a) illustrates the procedure of expert-centric
training. When an MoE block processes sequences of tokens, the
gate needs to assign experts for each token, and the token is dis-
tributed by the gate to the GPUs that host the allocated experts.
This distribution of tokens to GPUs is completed by an All-to-All
communication primitive, as the target GPUs of the tokens gen-
erated by a GPU are likely to include all GPUs. After the tokens
are processed by their assigned experts, the results need to be sent
back to their original GPUs, which requires All-to-All communica-
tion again. As an MoE model always has multiple MoE blocks, the
training of an MoE model could involve many times of All-to-All
communication operations.

3 OBSERVATION AND MOTIVATION

3.1 Observation on Expert-centric Paradigm

In this subsection, we profile the time cost of training MoE mod-
els in the current expert-centric system and have the following
observations.

The communication workload is heavy and imbalanced.
We profile the time cost of training three MoE models in four 8-
A100 GPU machines when each MoE block has 32 experts and the
time cost of training these models in two 8-A100 GPU machines
when each MoE block has 16 experts. The configuration of the
models is shown in Table 1. We train a large number of iterations
and report the average statistics of these iterations in Figure 3.
We can see that on average the latency caused by the All-to-All
communication in an iteration occupies 38.5% - 68.4% of the time
of a whole iteration. Besides, the numbers of tokens assigned to
different experts are imbalanced [24]. All-to-All primitive is a kind
of synchronous collective communication, which means that the
latency is determined by the busiest worker who needs to send and

488

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

Table 1: Configuration of models and Traffic reduction of data-
centric paradigm (D.C.) compared with expert-centric paradigm
(E.C.)

Model MokE- MoE- MoE-
BERT GPT |Transformer-x1
Batch size B 256 256 64
Seq. length S 128 64 512
Top k in gate 2 4 2
Expert dim. H 768 768 256
#MOoE block? 4 1 12
#Total block 12 12 12
#Expert 16 32 16 32 16 32
#GPU 16 32 16 32 16 32
Model size (B)* |0.42 0.73|0.23 0.31|0.11 0.21
E.C. Traffic>(GB)| 6 9 |15 225] 6 9
D.C. Traffic(GB) | 0.56 1.69|0.14 0.42|0.19 0.56

receive the largest amount of tokens. Therefore, the imbalanced
workload has a negative influence on the training time.

The links between GPUs are heterogeneous. Generally speak-
ing, the GPUs within the same machine are connected by NVlinks,
and GPUs in different machines are connected by an RDMA net-
work. We stress test the goodput of the All-to-All primitive on
different links in two environments: (1) an 8-GPU machine; (2)
four 8-GPU machines connected by an RDMA network. Each ma-
chine is equipped with four 200Gbps NICs and each NIC is shared
by two GPUs in the machine. The experimental results show the
goodput in the former setting reaches 1846.58Gbps while the good-
put in the later setting only reaches 101.9Gbps. The intra-machine
All-to-All goodput is 18X larger than the inter-machine All-to-All
goodput, which suggests that the bandwidth of intra-machine links
is not fully utilized during inter-machine All-to-All communica-
tion, and the system performance is limited by the bandwidth of
inter-machine links.

Cross-GPU links can be underutilized or idle in some time
slots. We observe that the links between workers are underuti-
lized or idle in some time slots. This is because no data needs
to be exchanged among GPUs when these GPUs are conducting
computation of the Attention layer. Once the computation of the At-
tention layer is completed and the gate has derived the assignment
of the tokens to experts, the gate needs to distribute the tokens to
the experts, and a traffic burst occurs. If we can do some useful
communication in the idle time slots and smooth the bursts, the
resource contention can be mitigated and the training process can
be accelerated.

All of current MoE training systems adopt the expert-centric
paradigm, which means they all have the above issues.

3Number of MoE block indicates how many blocks are expanded as MoE blocks
among total blocks. For example, MoE-BERT has 12 blocks, among which 4 blocks are
expanded as MoE blocks and other 8 blocks are Transformer blocks. The number of
MOoE block is a hyper-parameter and we set it as 4,1,12 in experiments respectively.
“Here, B is the abbreviation of billion, instead of byte.

5The traffic is referred to the volume of cross-machine traffic per machine in each
iteration in the All-to-All communication. More comprehensive analysis is elaborated
in Section 5.1.3.

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

L 7000 i
s000{ A :ﬁ;ailn‘m asass 7 lteration
. o 6000 = AlltoAll
4000 ,
P / __ 5000
M 4 3
£ som0 20465 < a0 3628 7
3 . o
E 21109 841%)| E 3000 / 2482.0
F 200017 #1372.4 e = /(ss 4%)
/65.%) o oo
1000200 893734, A S 1853054 5
/ 7 (38 o) / 1000 // 7) (a4.4%)
et .
MoE-BERT MOE GPT MoETransformerd MoE-BERT MoE GPT MoETransformerd
(a) 16GPU (b) 32GPU

Figure 3: The average latency of a single iteration and the aver-
age latency caused by the All-to-All communication in an iteration.
(Number in brackets is the percentage of the latency of All-to-All
communication.)

3.2 Data-centric Paradigm

We notice that the volume of expert modules can be smaller than
the volume of tokens. To shorten the time taken by communication,
we propose the data-centric paradigm. As Figure 2(b) shows, in our
data-centric paradigm, the workers pull experts to the local instead
of pushing tokens to other workers. In this way, the communication
workload can be reduced, as Table 1 shows. Besides, the computa-
tion result in expert-centric paradigm is strictly equivalent to the
results in data-centric paradigm. Therefore, data-centric paradigm
does not affect the convergence of training and model accuracy. In
data-centric paradigm, the communication workload also becomes
balanced among workers since each expert is of the same size. Be-
sides the advantages of reducing and balancing communication
workload, the data-centric paradigm has the following advantages
over the expert-centric paradigm.

e Less synchronization between workers. In the expert-centric
paradigm, the training of MoE blocks requires All-to-All commu-
nication while it is synchronous. The All-to-All communication
is completed until all of workers receive all of tokens they need.
This may cause potential efficiency losses since fast machines
have to wait for slow machines. In the data-centric paradigm, all
communication is caused by pull operations, and workers do not
need to wait for each other when pulling experts. A worker can
respond to a pull request and send out the requested expert at
any time in an iteration. The communication becomes asynchro-
nous, which indicates that a GPU can proceed its task without
the negative influence from other GPUs during an iteration.

e Data reusability. In the expert-centric paradigm, tokens sent by
a worker to another worker cannot be used by other workers. In
the data-centric paradigm, the expert pulled by a worker can be
reused by other workers. The reusability provides an opportunity
to merge the responses for the pull requests of the same expert
and thereby further reducing traffic.

e Earlier communication. In the expert-centric paradigm, All-
to-All communication happens only after tokens are produced
by the previous layer, that is, the model computation reaches
the expert layer. In the data-centric paradigm, pull requests of
experts can be issued at any time after one iteration starts, e.g.,
the model computation reaches the first layer. This is because
the experts will not be changed within a single iteration.

489

Juncai Liu et al.

GPU Machine GPU Machine
\ Worker \ \ Worker \ \ Worker \ \ Worker \
Janus Task Queue Janus Task Queue
Credit-based Credit-based Credlt based Credlt based
Buffer Buffer u fer Buffer
Intra-node Intra-node Intra-node Intra-node
Scheduler ™ Scheduler Scheduler Scheduler
F
~N 4
Inter-node ‘ ‘ Inter-node
Manager Scheduler H‘ I Scheduler Manager

— request to pull expert
""" * expert module

Figure 4: Janus architecture overview.

4 OVERVIEW OF JANUS

Following the principle of the data-centric paradigm, we design
Janus. Figure 4 shows the architecture of Janus. The workers are
still responsible for executing model computation. When training
an MoE model, those experts are divided into several parts and
allocated to workers. Each worker is responsible for storing the
weights of its experts and update them in each iteration.

When the computation reaches the gate of an MoE block, if com-
munication size of transferring experts is larger than intermediate
data. Janus will adopt expert-centric paradigm and call All-to-All
primitive. Otherwise, Janus will adopt data-centric paradigm, where
workers put requests of fetching experts into Janus Task Queue
and wait for expert modules. After acquiring experts, workers can
execute computation on the expert modules. At the end of an itera-
tion, workers generate gradients of the experts, and they need to
ask the Janus Task Queue to send the gradients back to the original
workers of these experts to update the weights of the model.

Each machine has a Janus Task Queue, which includes an Inter-
node Scheduler and several Intra-node Schedulers (one for each
worker). Each Intra-node Scheduler, which is attached to a worker
(i.e. GPU) and lies in the memory of the GPU, is responsible for
receiving requests from its corresponding worker and fetching ex-
perts for the worker. It has a component named Credit-based buffer
to manage the buffer space to save the pulled experts. Inter-node
Scheduler, which is located in the CPU memory of the machine, is
responsible for fetching experts from other machines upon receiv-
ing requests from the intra-node schedulers of the local machine.
Besides the communication function, it has a component named
Cache Manager to cache experts pulled from other machines.

If the requested expert has been pre-allocated to the local ma-
chine, Intra-node Scheduler pulls it from the workers who have
it. Otherwise, Intra-node Scheduler will pass the request to the
Inter-node Scheduler in this machine and wait for the Inter-node
Scheduler to return the expert. Inter-node Scheduler will return
the expert module from Cache Manager or request from other ma-
chines.

Janus Task Queue is the core component in Janus. By appropri-
ately scheduling the requests of fetching experts, it improves the
communication efficiency during training MoE models. We briefly
introduce the main scheduling strategies here.

First, after receiving requests from workers, the Queue pulls
experts one by one in a fine-grained manner instead of pulling
all experts simultaneously (5.1). This fine-grained manner enables

Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

that each worker can execute the computation of one expert while
receiving other experts at the same time (5.1.1). In this way, parts
of communication time can be hidden by the computation time of
experts. It also avoids the contention among requested experts and
makes some experts arrive earlier. The experts that arrived earlier
can be cached in the Cache Manager and shared by workers in the
local machine (5.1.2). Besides, the gradient generated from workers
in the local machine can be merged in the Inter-node Scheduler
before being sent out, which further reduces the cross-node traffic
and greatly accelerates communication efficiency.

Second, the Queue arranges the order of requests according to
the topology of workers to alleviate the contention of bandwidth
of bottlenecks (5.2).

Third, the Queue tries to prefetch experts when possible, which
enables that the computation of the expert layer can start immedi-
ately once the computation of the former layer completes (5.3). In
this way, the underutilized bandwidth in the time slots when GPUs
are focusing on computation and no communication is needed is
leveraged.

5 SYSTEM DESIGN
5.1 Fine-grained Task Scheduling

In the expert-centric paradigm, a worker has to receive tokens
from all different workers before it starts the expert computation.
In Janus, each worker usually needs to pull all experts in the ex-
pert layer to complete the computation of its tokens on this layer.
However, it is unnecessary and infeasible to pull all these experts si-
multaneously before the computation starts. Once an expert arrives,
the computation on this expert can start. Janus splits the request
of all non-local experts from a worker into a set of small tasks and
only a single expert is required to be pulled in each small task. Thus,
Janus can schedule these small tasks in a fine-grained manner.

This fine-grained manner benefits the system in three aspects.
First, the computation of an expert can start immediately once the
expert is received successfully. Thus, the computation of one expert
and the communication of the other expert can overlap, which
speeds up the training. Second, it is impossible for the limited
GPU memory to host all experts. By requesting experts one by
one, we can discard the used experts to host later experts. Third,
by scheduling, Janus avoids the resource contention of fetching
experts, then some experts can be received earlier and they can be
shared with other workers in the local machine. Thus, the cross-
node traffic can further be reduced.

In this subsection, we introduce the asynchronous communica-
tion mechanism in the Intra-Node Scheduler to implement the first
two benefits, and then introduce the hierarchical communication
mechanism in the Inter-Node Scheduler to implement the third ben-
efit. At the end of this subsection, we analyze the communication
efficiency of Janus mathematically.

5.1.1 Asynchronous Communication Mechanism in Intra-Node Sched-
uler. In the expert-centric paradigm, All-to-All communication is
a kind of synchronous collective communication. As Figure 5(a)
shows, in the forward phase, the expert computation (Ep Comp.
in the figure) in a worker cannot begin until all needed tokens
are received. In the backward phase, the gradient computation of

490

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

Iter i Iteri+1
. I
Forward phase Backward phase
L L
AlltoAll AlltoAll ‘ ‘ AlltoAll AlltoAll
Ep’s grad sync
EE Comp.
(a) Expert-centric time
Iter i Iter i+1
I L
‘ Forward phase Backwa‘rd phase
r) f)
Pull | Pull Send ep- Send ep-
ep-A| ep-B Agrad B’s grad e
Ep-A | Ep-B Ep-A's grad | Ep-B's grad !
Comp. Comp. Comp. Comp.
(b) Data-centric time

Figure 5: The pipeline of asynchronous communication in fine-
grained task scheduling

experts (Ep’s grad Comp. in the figure) cannot begin either until all
needed tokens are received. As for the data-centric paradigm, in
the forward phase, workers only need to conduct pull operations
for communication among GPUs, and the computation of different
experts is independent of each other. After receiving an expert, a
worker can perform the expert computation while pulling the next
expert at the same time, as Figure 5(b) shows. In the backward phase,
a worker can send back the gradient of an expert for update once
the gradient is generated, without waiting for generating gradient
of other experts in that worker. In this way, the communication
and computation can overlap on the timeline and the training time
of the MoE block can be shortened. At the end of an iteration, the
workers need to synchronize until all expert’s weights are updated
and then the workers will clear the cache because it is stale. There
is no asynchronous operation between workers when updating
model with gradients and the asynchronous operation only exists
when fetching experts. Thus, training with asynchronous communi-
cation provides the same model accuracy as training with All-to-All
communication since no stale cache is used and these two kinds of
paradigm are equivalent.

Specifically, an Intra-Node Scheduler provides a Credit-based
buffer to implement the asynchronous communication mechanism.
A buffer on the GPU memory is pre-allocated to save the pulled
experts, and it has a parameter which is named as credit, which
represents the number of experts its remaining space can host. Its
initial value is set to be C, which is the size of the buffer divided
by the size of one expert. A credit is consumed each time a pull
operation is requested. When an expert is pulled to the local worker
and the expert computation is completed, a credit is released, and
the expert is offloaded to the CPU memory and will be reused in
backward computation stage by copying it from the CPU memory
to the GPU memory. When C credits are used up, all pull tasks are
blocked until a new credit is released.

5.1.2 Hierarchical Communication Mechanism in Inter-Node Sched-
uler. In a multi-machine GPU cluster, an inter-node link (which
is an RDMA link going through NIC) has smaller bandwidth than
an intra-node link (like NVlink). So we should reduce inter-node
traffic as much as possible. Janus implements a hierarchical com-
munication mechanism for this goal.

With the hierarchical communication mechanism, an Inter-Node
Scheduler is responsible for gathering and merging the requests for

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

Table 2: NOTATION LIST

Notation Description
n number of machines
number of workers per machine
number of experts per worker
dimension of a token input to an expert
number of tokens generated by a worker
the gate parameter topK
batch size of the training task in each worker
sequence length of the training task

(ol R Rl R

the same external expert®. We explain how the inter-node traffic is
reduced by our hierarchical mechanism in the forward phase and
the backward phase, respectively.

Forward computation: In an iteration, an Inter-Node Sched-
uler will pull experts from other machines and store them in its
Cache Manager if the requested experts have not been cached. If the
requested expert has been in the Cache Manager, the Inter-Node
Scheduler will directly return the expert from the Cache Manager.
After the iteration is completed, the experts in the cache will be
cleared to release space. It can be seen that with the cache mecha-
nism, an external expert pulled by a worker can be shared by other
workers in the same machine. In this way, each machine only pulls
the external experts once in an iteration.

Backward computation: In the backward phase, all experts
have been in local memory of the CPU or the GPUs, so no inter-node
communication is needed. However, after the backward compu-
tation which generates gradients, the gradients need to be sent
back to the original location of the expert to update their weights.
Naively, the gradients generated by each GPU will be sent to the tar-
get GPU separately, and then the target GPU reduces (i.e. average)
the gradients from all workers.

To reduce the inter-node traffic, the inter-node scheduler first
waits and accumulates the gradients from all local workers. After
the collection for an expert is completed, the gradients of this expert
will be pre-reduced and then sent back to the target GPU. In this
way, each machine only sends back the gradients of each expert
once in an iteration.

5.1.3 Communication Efficiency Analysis. The fine-grained sched-
uling of Janus enables the above hierarchical communication mech-
anism, which significantly reduces inter-node traffic. Since the
communication bottleneck of the whole system lies in inter-node
communication instead of intra-node communication, we take the
volume of inter-node traffic as a metric to evaluate the potential
communication efficiency of training systems.

In this subsection, using the metrics, we mathematically analyze
the efficiency of the data-centric paradigm and its theoretical gains
over the expert-centric paradigm. We first analyze the communi-
cation volume in the forward phase in detail and then analyze the
communication volume in the backward phase briefly since it is
similar to the analysis in the forward phase. Some commonly-use
notation is listed in Table 2.

Experts stored in the workers in outside machine. Note that in the expert parallelism,
the expert layer is split and each worker only has a part of experts.

491

Juncai Liu et al.

Data-centric: In the data-centric paradigm, the inter-node traffic
is caused by fetching experts from remote machines, so we need to
derive the size of an expert.

In MoE model, each expert module is usually a FeedForward
Network (FFN) which is composed of two Linear layers. For an FFN
module, the first layer includes a matrix with a shape of H «4H, and
the second layer includes a matrix with a shape of 4H * H. Therefore,
the size of an FEN module is 8H2. Each worker has E experts, then
a machine has mE experts. Since each machine needs to broadcast
these mE experts to other n — 1 machines, the communication
volume in the data-centric paradigm during training an MoE block
is

Commpce = 8H*Em(n - 1).

Expert-centric: In expert-centric training systems, the token
distribution among experts is usually imbalanced. The time needed
to complete communication depends on the machine with the
largest volume of data to be sent/received. Obviously, the com-
munication time under imbalanced distribution is almost always
longer than the case of balanced distribution. ’

Now we calculate the size of the tokens to be transferred, which
is the inter-node traffic volume. Each worker generates T tokens,
then a m-worker (GPU) machine can generate mT tokens. Under
the assumption of balanced distribution of tokens, there are n=1
percentages of tokens to be sent to other machines. In the expert-
centric paradigm, an MoE block requires two All-to-All commu-
nication operations in the forward computation stage. Therefore,
the communication volume of expert-centric paradigm in an MoE
block is

n-1
Commpgc = 2mHT * .

This completes the analysis of the traffic volume in the forward
phase.

As for the backward phase, in the expert-centric paradigm, the
system needs to transmit all intermediate results required for gener-
ating gradients, and this volume is equal to the volume of the tokens
it sends in the forward phase. In the data-centric paradigm, the
system can reuse the experts pulled and cache in the forward phase.
After calculating the gradient of the expert module, the gradient
should be sent back to the original worker. The size of gradients is
the same as the expert model pulled, and the communication direc-
tion is opposite. Besides, multiple gradients of the same expert in a
machine are reduced and merged before being sent back. Therefore,
in the data-centric paradigm, the traffic volume in the backward
phase is also equal to the volume in the forward phase.

Discussion: We define a metric R to evaluate the theoretical gain
of our data-centric paradigm, which is the ratio of the inter-node
communication volume under two paradigms. Mathematically, we
have

_ Commgc T
" Commpc 4nHE'

7One extreme case is that one worker sends most of its generated tokens to the workers
in the local machine, which is imbalanced but the inter-node traffic is low. We believe
that this kind of case is extreme and uncommon, and assume that the case where the
token distribution is balanced among experts is the best case which produces the lower
bound of the communication time in the expert-centric paradigm.

Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

e e switeh
(cPU] (cPU)
OO0 0000
10 AR ERED i EE EEEE
NVSwitch NVSwitch
(a) Stage 1 (b) Stage 2

Figure 6: 2-stage scheduling strategy (the activated links and com-
ponents in the communication are red).

Additionally, the number of tokens can be calculated given the
training parameters, including the size of batch, the length of se-
quence, and the gate parameter top-K in the MoE block. The formula
is as follows.

T = BSk
Thus, we have
_ 4BSk ' (1)
nHE

Obviously, R > 1 indicates that the efficiency of data-centric par-

adigm is superior to the efficiency of expert-centric paradigm. The-

oretically, the communication time in data-centric paradigm is % of
the time taken in expert-centric paradigm. Since MoE block extends
from Transformer block, based on Transformer model[11][36], the
expert’s dimension H usually lies in range from 256 to 1024. The
sequence length S could be 512 or even 2048 for tasks with long
sequence [11]. To fully utilize the GPU memory, the batch size B in
a worker is usually set as much as possible in a reasonable range,
such as from 64 to 512. Obviously, in most cases, R > 1 can hold.
Examples have been shown in Table 1. In practice, the value of R
lies in a wide range since factors like batch and hidden size are
task-specific.

Janus is a unified framework of expert-centric paradigm
and data-centric paradigm. Janus evaluates R before the train-
ing of an MoE model starts. For the MoE blocks where R < 1,
Janus will use the expert-centric paradigm by default. For
the MoE blocks where R > 1, Janus will use the data-centric
paradigm.

5.2 Topology-aware Priority Strategy

In a GPU cluster, the bandwidth of links is heterogeneous. Fig-
ure 6(a) shows the internal links in a A100 machine where GPUs
are connected by NVlink and its bandwidth is 600GB/s. A GPU is
connected to the CPU of the machine by PCle, whose bandwidth is
64GB/s [3]. A connection across machines goes through GDR NIC,
and the bandwidth is 200Gbps. When fetching experts from work-
ers in local or outside machines, ignoring the physical topology
easily leads to unnecessary congestion of some links and is harmful
to communication efficiency. Therefore, the scheduling priority of
the pulling operations needs to be carefully considered based on
the topology.

For each worker, the experts to be pulled can be divided into
two parts. The first part is internal experts, which are stored in

492

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

Worker-0 | 1 2 3 11213
Worker-1 0 2 3 2/13|0
Worker-2 0 1 3 g 2 ;
Worker-3 0 1 2] time time

(a) pull in the same order (b) pull in stagger order

Figure 7: Workers schedule pulling operations in the same order and
in the staggered order. Each row represents the scheduling order of
a worker. The number No. in the blocks represents fetching experts
from worker-No.. The length of the block represents the time cost
of the corresponding pulling operation.

Algorithm 1 Priority Scheduling for Pulling Internal Experts

Input: Local rank of the worker r; Number of workers per machine
m; Number of experts per worker E.
forie [(r+1)«E,m=E)do
pulling i-th internal experts;
end for
forie [0,r xE) do
pulling i-th internal experts;
end for

the workers in the same machine. The internal experts are pulled
directly via NVlinks. The second part is external experts, which are
stored by other machines. The external experts have to be pulled
to the CPU memory via an RDMA network and then copied to the
GPU memory.

Figure 6 illustrates our scheduling strategy, which has two stages.
In the first stage, two kinds of operations are conducted. The first
kind of operation is that each GPU pulls internal experts from other
local GPUs to its GPU memory with the help of its local intra-node
scheduler. The second kind of operation is that the machine pulls
external experts to its CPU memory with the help of the inter-
node scheduler. Figure 6(a) shows this stage. We can see that links
involved in two kinds of operations are different, which means
these two operations can be done in a parallel manner without any
interference. In the second stage, Janus copies the external experts
that have been cached from CPU memory to the memory of each
local GPU.

Among the above pulling operations, when pulling internal ex-
perts from other local GPUs and pulling external experts from Cache
Manager, the resource contention can be mitigated via proper ar-
rangements. We explain how to arrange the priority of pulling
different experts as follows.

Priority strategy on pulling internal experts from other
local GPUs: For the second kind of pulling operations in stage 1
(i.e., pulling internal experts from other local GPUs), if all workers
pull internal experts in the same order, the GPU that hosts the
requested expert will receive the requests from different workers
at the same time, which means the traffic demand is unbalanced in
timeline and bottlenecks will occur on each GPU in turn. Figure 7(a)
shows this phenomenon. At the beginning, worker-1,2,3 all pull
experts from worker-0, which makes the egress of worker-0 become
a bottleneck. Therefore, Janus needs to schedule these operations
in a staggered order in the first stage.

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

AB C D] CPU [B D] Expert A
YA A 'B C DI))
Xpert
wit j
GPU O GPU 1 PU1

(a) Pull via PCle (b) Pull via peer

Figure 8: PCle-Switch-aware Scheduling. (before: pull via PCle di-
rectly. after: pull via peer in best-effort manner)

Scheduling Order

GPU-0 [A[B[C[D] [A[B]C[D]
GPU-1 (AlB|clD] (B[A[D[C]
Link utilization
>switch LA B[C[D]
CPU -> Switch A B ¢ D B D]
Switch->GPUO A [B [C [D [ATC]
Switch->GPUL [A [B | C | D | [BID]
NVIink 0> 1
NVink 1->0 (D]

time time

(a) Pull via PCle

(b) Pull via peer

Figure 9: Scheduling order and link utilization in the PCle-Switch-
aware Scheduling.

Suppose each worker has its index, denoted by r € [0,m — 1].
We use rank(i) to denote the local rank of the worker in which
the i-th internal expert is located. The priority of pulling the i-th
expert into the worker r is as follows.

P {rank(i) -,

o rank(i) + m —r,

rank(i) > r
rank(i) <r

Note that smaller P] denotes higher priority. The order of pulling
experts is shown in Algorithm 1.

Figure 7(b) shows the scheduling results with the above pri-
ority assignment. It can be seen that, for each worker, only one
other worker pulls experts from it at the same time. The resource
competition on the egress bandwidth of the GPU is relieved.

Priority strategy on pulling external experts from Cache
Manager: The traffic needs to go through the PCle links when
copying experts from the CPU memory to the memory of GPUs,
i.e. from Cache Manager to workers. In an A100 machine, one PCle
switch is connected to two workers (GPUs). If both workers request
the same experts from the CPU memory, the expert will go through
PCle switch twice. Thus, the efficiency of the link connected with
PCle switch and CPU memory is sub-optimal. We arrange the order
of these pulling operations and leverage the NVlink to improve
efficiency.

Figure 8 shows our scheduling method. We first divide the ex-
perts on the Cache Manager into two groups. Each one of the two
workers connected by a PCle Switch is responsible for one of the
two groups. One worker firstly pulls an expert in the group it is
responsible for from the CPU memory via PCle, and then pulls
an expert in the other group from its peer worker via NVlink. In
this way, the workload on the link connected with CPU and PCle
Switch is reduced.

Figure 9 illustrates the scheduling results and the utilization
of links with our priority strategy. The task order between peers

493

Juncai Liu et al.

moe model —{EN-{E0-E0-E0-

Without prefetch

. Transformer block

. MoE block

Fetch experts

With prefetch
[37] Computation

(Ep-1 .
(fetched)
45'\ Az

@ ©

i i Pull at this point
m{kalsrtehflétgﬁmt without Pre?fetch

time

O Gate

[] Attention

Figure 10: The concept of prefetch.

becomes interleaving, so the idle NVlink can be leveraged, and the
tasks can be completed in parallel. With this management on the
priority, one worker can cache an expert in time, which will be
pulled by its peer via NVlink in the next scheduling interval. Besides,
each expert only occupies the GPU memory in two scheduling
intervals, which is friendly to the limited GPU memory.

5.3 Provident Prefetch Strategy

An MoE model can have both Transformer blocks and MoE blocks,
as Figure 10 shows. When a worker performs computation in the
Transformer blocks or the Attention layer in the MoE blocks, it
does not need to exchange information with other workers, so
its communication links could be idle (at least underutilized) in
these time slots. Data-centric paradigm allows Janus to pull experts
before the model computation reaches the gate in the MoE block,
since experts’ weight will not be changed in an iteration. Therefore,
at the beginning of an iteration, Janus can start to pull all external
experts to the local CPU memory to leverage the idle time slots
of cross-node links. If there is a credit for the credit-based buffer,
Janus can also prefetch internal experts to the credit-based buffer to
leverage the idle time slots of NVlinks. Figure 10 compares prefetch
mechanism and non-prefetch mechanism in terms of the timeline
of communication and computation of each block (Credit Size is 1
in this example). With prefetch mechanism, the expert computation
can start immediately once the computation in the Gate completes,
without waiting for fetching experts for a long time. Thus, the
training can be sped up.

6 IMPLEMENTATION

Janus not only integrates the communication-efficient Janus Task
Queue, but also provides complete implementations of MoE block
in the application layer so that developers can easily apply the
MoE block in their MoE model. The core implementation of Janus
contains 4.3K lines of code. We currently implement Janus as a
plugin in PyTorch [28], which is plug-and-play and convenient for
developers to use. By import janus.layer.MoE, developers define their
MOoE block, just like using torch.nn.Linear to construct their models,
and the details of cross-worker communication are transparent to
developers.

We introduce the implementation of the basic operations or
components which are non-trivial to be implemented as follows.

Implementation of integrating data-centric paradigm into
computation graph: How to integrate our data-centric paradigm
into the expert parallel system to replace the original All-to-All

Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

(] startFetchOp
D FetchOp

Get expert from buffer

Forward
execution stream

Send all Pull request Save grad in the cache

send back grad

(T EpT i 2 HEBZ e o

" Sync until grad is sent back already

Backward
execution stream

Figure 11: Integrating data-centric paradigm into computation
graph

primitive? Janus inherits the class torch.autograd.Function and cre-
ate two types of Op: StartFetchOp, FetchOp, which are inserted into
the computation graph of the Expert layer to solve this problem, as
Figure 11 shows.

Class torch.autograd.Function allows to customize the forward
and backward behavior of the Op, which can be inserted into the
computation graph. StartFetchOp is inserted into the graph when
the data stream just enters the MoE block. In this Op, an optimized
fetching order will be calculated and all of the “pull” requests will
be sent out in the forward phase. At this time, it begins to receive
expert modules. Since the PreFetch mechanism is applied, the “pull”
requests can be sent out before the computation in gate by Janus.
FetchOp is inserted before the computation of each of expert mod-
ules, In this Op, Janus will poll the credit-based buffer to acquire
the received expert module in the forward phase.

In the backward phase, the order of execution stream is oppo-
site to that in the forward phase. In FetchOp, Janus will calculate
the gradient of the expert on the buffer and write the result into
the cache in Cache Manager and then the gradient of the expert
will be sent to the GPU on the corresponding worker. Finally, in
StartFetchOp, workers synchronize until gradient is already sent
back.

Implementation of pull-based communication: Data-centric
paradigm is a pull-based communication. We combine the send API
and recv API in the BytePS communication library [18][2] to build
our pull operation.

Specifically, Janus adopts socket to pass messages on the con-
trol plane and adopts RDMA connection to pass data on the data
plane. When a worker requests an expert from another worker, the
requester sends a request to the target worker through the socket,
and calls the recv API to receive data. The target worker listens to
the port of socket all the time. After receiving the request, the target
worker calls the send API to send data to the requester through the
RDMA connection.

7 EVALUATION
7.1 Experimental Setup

We evaluate Janus on a cluster with 32 GPUs on 4 machines. Each
machine is equipped with 8x NVIDIA A100 SXM 80GB GPUs and
200Gbps NIC. Each machine also has 500GB of memory and 40 CPU
cores. GPUs are connected by NVlink and NVSwitch within one
machine, as Figure 6 shows.

We evaluate Janus on 3 models: MoE-BERT, MoE-GPT and MoE-
Transformer-x1 [10]. BERT can be regarded as a representative of

494

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA
2.0 B Data-Centric
! 1T Data-Centric + Topo.
== Data-Centric + Topo. + Prefetch
184 1.79,1.80 181
£l . :
60 .o
§ 1.6 1.58 1 5
g l ﬁ I. : %
N 1.4+ ..
g1 BE BE
1.2 4 -e - -
J. : I I)
1.0 — =
MoE-BERT oE GPT MoE Transformer x|

Figure 12: Speedup of the optimizations separately

the category of pre-trained models based on transformer encoder.
GPT and Transformer-xl can be regarded as representatives of the
category of models based on transformer decoder. The configura-
tion of models is shown in Table 1. All of these models have 12
blocks, each of which is a normal Transformer block or MoE block.
The 2nd, 5th, 8th, and 11th blocks in the MoE-BERT model are MoE
blocks. The 11th block in the MoE-GPT model is an MoE block. All
of the 12 blocks in the MoE-Transformer-xl model are MoE blocks.
Each MoE block has 32 experts. Thus, the number of experts for
each block pre-allocated to each worker (i.e. E) is 1.

We compare Janus with a state-of-art MoE training system named
Tutel [4] in the evaluation experiments. Tutel supports expert paral-
lelism with expert-centric paradigm and has many communication
optimizations in All-to-All primitives. As a unified implementation
of expert parallelism, Janus supports expert-centric paradigm and
data-centric paradigm. Janus uses paradigm based on the theoreti-
cal gain R. When R < 1, the expert-centric paradigm in Janus has
less difference from the expert-centric paradigm in Tutel, so we
mainly focus on the cases in which all MoE blocks or at least 1 MoE
block in models satisfied R > 1.

7.2 Ablation Study

7.2.1 Ablation of Optimization. We evaluate the contribution of
each strategy in this subsection and observe how the speedup on
the iteration time gradually improves when the three scheduling
strategies are gradually applied to the system. Note that the fine-
grained task scheduling is the fundamental design in the data-
centric paradigm in Janus, which is necessary to make the system
work. Topology-aware priority strategy and prefetch strategy are
optional choices that are designed to further improve performance.
So we label the system with only fine-grained task scheduling as
Data-Centric in the figure. In this subsection, the baseline of the
speedup is the expert-centric paradigm in Janus.

We visualize the results in Figure 12. The result shows that
the data-centric paradigm is the main contributor to efficiency
improvement. The Speedup on training MoE-BERT, MoE-GPT, MoE-
Transformer-xl in the data-centric paradigm without Topology-
aware optimization and prefetch strategy, can already reach 1.26X%,
1.58% and 1.79X. This is because the traffic volume has been greatly
reduced in this paradigm. The topology-aware scheduling strategy
and the prefetch strategy both make an incremental and effective

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

B block-0 3 block-3 [block-6 3 block-9
T block-1 [block-4 [block-7 3 block-10
= block-2 [block-5 = block-8 B block-11
Block
0 50 100 150 200 250
N ep-l EE ep-7 3 ep-12 [ep-17 [ep22 [E3 ep-27
E ep-2 [ep-8 [ep-13 [ep-18 [ep-23 [ep-28
B ep-3 I ep9 [ep-14 [ep-19 [ep-24 [ep-29
N ep-4 T ep-10 3 ep-15 3 ep-20 3 ep-25 B ep-30
B ep-5 3 ep-11 3 ep-16 3 ep-21 3 ep-26 B ep-31
B ep-6
Expert
0 50 100 150 200 250
Time (ms)

Figure 13: Time breakdown of the computation of each block and
pulling each expert on MoE-GPT

contribution. With all of the optimizations, the Speedup on training
MOoE-BERT, MoE-GPT, MoE-Transformer-xl can reach 1.31X, 1.63X
and 1.81x.

7.2.2 Computation-Communication Overlap of Prefetch Strategy.
To show the details of how the prefetch strategy improves efficiency
in practice (i.e., the computation- communication overlap achieved
by the prefetch strategy), we take the MoE-GPT model as an exam-
ple and observe its forward phase in an iteration when the prefetch
mechanism is applied and Topology-aware optimization has not
been applied.

We visualize the result in Figure 13. The sub-figure above shows
the timestamps when each of 12 blocks completes the computation.
Each color represents a block. The sub-figure below shows the times-
tamps when each of experts has been pulled completely. Each color
represents an expert. The result shows that the MoE blocks (i.e.,
the 11th-block) indeed takes a longer time than normal transformer
block. This is because the former blocks are normal transformer
blocks in this model and there is no need to exchange data with
other workers for these blocks. When the model completes the
computation of the first 11 blocks, the worker has already pulled 12
experts. The computation-communication overlap is around 74.9
ms, which is the time cost saved by the prefetch strategy. The accel-
erated forward phase in an iteration takes 210.4 ms. In this way, the
forward phase can be sped up by 1.36X and the prefetch strategy is
effective.

We can also notice that pulling the and 3'" experts (i.e. ep—2
and ep — 3) takes a little bit longer time than pulling other experts.
This is because the topology-aware priority strategy has not been
applied here. This worker and other workers request the 2"d and
3th experts from worker-2 and worker-3 at the same time, and thus
the egress of these 2 workers has congestion. This experimental
result further confirms the phenomenon we describe in Figure 7
and topology-aware scheduling is necessary.

2nd 3th

7.3 End-to-End Performance

The end-to-end performance, which is measured by the time cost
of an iteration, can directly represent the efficiency of the system.
We compare the end-to-end performance of Janus with Tutel in this
subsection.

495

Juncai Liu et al.

7 Tutel
5000 77 Janus
4000
m 3461.3
E 3000 4 an2s
° 728X
£ |
= 2000 1 //' .
oo
/. .4 13156404 ¢
] e e 1.48X
1000 | oo | - ! 5 .)
oG 50
o e P

MoE-BERT MoE-GPT MoE-Tranéformer—xI

Figure 14: End-to-end performance of Janus and Tutel

The time cost of an iteration not only includes the time taken
by communication, but also includes the time cost of forward com-
putation and backward computation of the model. Janus mainly
optimizes the communication part in an iteration. In this model
configuration, based on formula 1, the theoretical gain in com-
munication of MoE-BERT, MoE-GPT and MoE-Transformer-xl are
R =5.33, R =5.33 and R = 16, respectively.

Figure 14 shows the end-to-end performance of Janus and Tutel.
In terms of end-to-end performance, Janus can greatly reduce the
time cost in an iteration and achieve 1.28%, 1.48x, 1.52X speedup
on these three models, respectively. This result suggests that Janus
is highly efficient and outperforms Tutel when R > 5.33.

7.4 Sensitivity analysis

To explore how the parameters in configuration affect the train-
ing efficiency, we explore the sensitivity of batch size, length of
sequence in this subsection.

To analyze the sensitivity of batch size, we fix S = 256,k =
4 for MoE-BERT, S = 128,k = 8 for GPT and S = 256,k = 2
for transformer-xl, and then observe the end-to-end performance
when batch sizes are 64 and 128. Figure 15 shows the experimental
result. Please note that this configuration is different from the
configuration in Figure 14 (i.e. Table 1). The figure shows that the
iteration time in both systems increases with the increase of the
batch size. This is reasonable because the computation workload
also increases with the increase of the batch size. However, Tutel
(i.e. expert-centric paradigm) is more sensitive than Janus (i.e. data-
centric paradigm in this experiment). With the increase of the batch
size, the iteration time in Tutel can greatly increase and the speedup
of Janus on Tutel also increases. This is because the traffic volume
in All-to-All communication also increases besides the computation
workload.

To analyze the sensitivity of length of sequence, we fix B =
256,k = 4 for MOoE-BERT, B =32,k =8 for GPT and B= 64,k =2
for transformer-xl, and then observe the end-to-end performance
when the lengths of sequence are 256 and 512. Figure 16 shows the
sensitivity on sequence length. From the figure we can see that the
iteration time in both systems increases with the increase of the
sequence length since the computation workload also increases.
Tutel is more sensitive than Janus and the reason is the same as the
analysis on the sensitivity on batch size.

Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

MoE-BERT MoE-GPT MoE-Transformer-x|
5420.0 1835.4 43951
7 Tutel 1750 e Tutel 2 2 Tutel [
5000 4 Janus Janus / 4000 4 Janus ,/
4298.6 / 1500 / /
/
4000
) 4 7 s1seq | 12501 12180 /10655 | 3000728296 Iz
£ / /1% arm (1.72X) [2349.3
= 30001/ 26264 = 1000 @32 St a7
2 e 0 /g . /17312 A
£ : 7 750 A AN el YT A
F 20004 e | VAl | R ‘ | |
4] . e /. . /. ' .
/. . /. 500 - - . VA
o y o | s 0004 2 o
00 1% N I an oR PR
0 = / : / : = 0 — =
64 128 64 128 64 128

Batch

Batch

Batch

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

Figure 15: End-to-end performance for different batch sizes

4000 1

3000 1

Time (ms)

1000 1

2000 1

MoE-BERT MoE-GPT MoE-Transformer-x|
12986 1654.3 6000 5754.3
1 3 Tutel | 16004 # Tutel 7 2 Tutel
/ Janus Janus | | <000 Janus ||
/ 1400 1
3091.1 4 /10957
//2626 4 . 120071161 /Q 51X) | 4000 1 //(317_353,;)
/(.1'9‘”() 10001/ = | | |
. 764.4 o] .
. 800 /s ; 3000 2?6 | 1 |
/' : 600 4 2000 4 1731.2 s
. VE VR e~
BN O i 2R
S | | | 0 100047 7, 0
200 3
. Ce . /. ‘ /. . .
| |1 | . . |
256 512 256 512 256 512

Length of Sequence

Length of Sequence

4000 1" 70 Expert-centric 37412 39731

| = Data-centric):‘j:

3500 Janus // _—_':':

3000 1 '/’_—_‘:':2597.2
— (1.44X)
. s
g 2000 Z2nC 1870.7 // ...'.‘
ful AT ey

982.5 .o
| Bl |

1000 A / 2007 / oo

500 4 // o« o // PSS

o :FF o :FF .o

16GPU 32GPU
Figure 17: End-to-end performance on the PR-MoE-Transformer-x1
for different paradigm

expert-centric paradigm would be better than current implementa-
tion of data-centric paradigm when R = 1. Thus, for training the
PR-MOoE-transformer-xl model, only expert-centric paradigm or
only data-centric paradigm is sub-optimal. Janus system unifies
both paradigms. It automatically uses data-centric paradigm for the
first two MoE blocks and expert-centric paradigm for the last two

Length of Sequence

Figure 16: End-to-end performance for different lengths of se-
quence (OOM means out of GPU memory)

Besides, there is an error (i.e. out of GPU memory) when training
MoE-BERT model in Tutel when S = 512. This is because there are
so many tokens to be exchanged in the All-to-All communication
and the GPU has no more available memory as buffer to receive
these tokens. While Janus does not have this problem since only ex-
perts instead of tokens are transferred in the data-centric paradigm
and the volume of experts is smaller than the volume of tokens.

7.5 Unity of data-centric paradigm and
expert-centric paradigm in Janus

Janus is a unified training framework of expert-centric paradigm
and data-centric paradigm. It can support both paradigms at the
same time when training a model. In this subsection, we take
Pyramid-Residual MoE (i.e. PR-MoE) [31] as an example to show
how Janus unifies both paradigms.

PR-MoE model is a category of MoE models in which the shal-
low MoE blocks has a small number of experts and the deep MoE
blocks have a large number of experts. For example, in PR-MoE-
transformer-xl model, we make each of the first two MoE blocks
has 16 experts and each of the last two MoE blocks have 64 experts.
Thus, with 16-GPU expert parallelism, each GPU holds 1 expert
for each of the first two blocks (i.e. E = 1) and holds 4 experts for
each of the last two blocks (i.e. E = 4). We set B = 32, S = 256,k = 2
when training the PR-MoE-transformer-xl model, and the theoret-
ical gain is R = 4 for the first two blocks and R = 1 for the last
two blocks. In practice, we notice that the bandwidth utilization
has a gap to 200 Gbps (the capability in NIC) when copying re-
mote experts to local CPU cache because of the limit of the PCle
link between PCle switch and CPU. Conservatively, we consider

496

MOoE blocks to achieve better performance.

To observe the scalability of Janus and the effect of the number
of GPUs, we also conduct a PR-MoE-transformer-x! experiment on
a 32-GPU cluster. In this case, we make the batch size B = 64 and
each of the first two MoE blocks has 32 experts while each of the
last two MoE blocks has 128 experts. Thus, with 32-GPU expert
parallelism, each GPU still holds 1 expert for each of the first two
blocks (i.e. E = 1) and holds 4 experts for each of the last two blocks
(i.e. E = 4).

Figure 17 shows the experimental result. From the figure, we can
see that Janus outperforms the pure expert-centric paradigm and
the pure data-centric paradigm. Compared with the expert-centric
paradigm, it has 2.06X and 1.44X speedup on the 16-GPU cluster
and 32-GPU cluster, respectively. With the increase of the number
of GPU (i.e. the number of machine), the iteration time of expert-
centric, data-centric paradigm and unified paradigm all increases.
The speedup reduces as expected as we describe in Equation 1.

Please note that the number of GPUs (i.e. 16 and 32) in this exper-
iment is not a small parameter. For simplicity, this paper is based
on the context that only data parallelism and expert parallelism are
used in training. And 16 or 32 is a parameter for the degree of data
parallelism (also for the degree of expert parallelism). When train-
ing a giant model, like 175B GPT-3 model, on 1024 GPUs, all tensor
parallelism (TP), pipeline parallelism (PP) and data parallelism (DP)
have to be applied and a typical setting for degree of parallelism is
TP=8, PP=8 and DP=16.

8 RELATED WORK

Mixture-of-Expert model: Giant models with large scales of pa-
rameters have shown surprising model quality in various areas. For
example, BERT [11] achieves high performance on language com-
prehension and GPT [30] achieves high performance on language
generation.

To further increase the size of models and improve the perfor-
mance of models, MoE has been widely applied [21][13] [29][39][25].

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

Switch Transformer [15] proposed by Google is the early investiga-
tion of MoE. GShard [19], proposed later by Google, increases the
size of MoE to a trillion scale. PaLM [8] and GaLM [14] proposed by
Google achieve excellent results on language tasks, while M6-T [37]
proposed by Alibaba achieves good results on multi-modal tasks.
Users can train these models using our system, and improving the
training efficiency of these MoE models is the goal of our system.
MOoE training system: Expert Parallelism is proposed by Google
to train Switch Transformer [15], which could have 1.6 trillion pa-
rameters. DeepSpeed-MoE [31] and PathWay [6] utilize a variety
of parallelism, including expert parallelism, to train MoE models.
BASE layers [20], which is a part of FairSeq [26], is another im-
plementation of expert parallelism of MoE training systems. Some
research works have been proposed to improve the training effi-
ciency of MoE models. Tutel [17] proposed by Microsoft designs
adaptive parallelism switching and adaptive pipelining to handle
dynamic workloads of MoE. Tutel also proposed hierarchical All-
to-All communication to improve communication efficiency. Faster-
MOoE [16] proposed the concept of shadow expert to deal with the
imbalanced workload and proposed a smart fine-grained scheduler
to achieve asynchronous All-to-All communication. It achieves bet-
ter performance with the help of Megatron-LM [23]. SE-MOE [34],
proposed by Baidu, focuses on solving the limitation of storage and
improving access efficiency. SE-MOE also proposed hierarchical
All-to-All communication to improve communication efficiency.
Alpa [38] proposed a training strategy for MoE models from the
perspective of automated parallelism. All of these previous works
are based on the expert-centric paradigm naively. In this paper, we
propose the data-centric paradigm, a novel and equivalent way to
implement the necessary communication for training MoE models.
Janus unifies expert-centric paradigm and data-centric paradigm,
and it is communication-optimal both in theory and in practice.
DeepSpeed Zero3 [32] also proposes collecting parameters from
other GPUs on-the-fly to support very large models. One may think
the basic design idea is similar to Janus, but the core of Janus targets
on exploring the optimal communication pattern in MoE training,
which is essentially different from Zero3. Besides, at implementa-
tion level, Janus incorporates MoE-specific optimizations such as
asynchronous communication, hierarchical communication, and
the prefetch mechanism to further improve training efficiency.

9 DISCUSSION

In this section, we briefly discuss the application scope and the
future work of Janus.

As analyzed in Section 5.1.3, the R metric is a critical value for
data-centric’s performance gain, which scales linearly with the
input size (i.e., number of tokens) but decreases as the model size
becomes larger. It is well known that Transformer-based Large
Language Models (LLMs) are becoming increasingly huge in terms
of model size. However, recent NLP literature is also exploring
longer context length for LLMs (e.g., 100K in Anthropic Claude [1]
and even 1B in LONGNET [12]) so that LLMs learn the ability to
understand and interact with human even after long conversation.
Given this fact, training LLMs usually requires long sequence length.
We use a concrete example to elaborate this impact. The sequence
length in training GPT-3 (hidden size 12288) is usually 2048, and the

497

Juncai Liu et al.

global batch size can reach more than 1M [7]. Supposed the degree
of data parallelism is 128, k as 1 in MoE gate, and each worker holds
only an expert (E = 1), we get the R = 20.35. Therefore, data-centric
paradigm not only can accelerate current GPT-3 style MoE model,
but can also expect higher gain in the near future as long context
length is becoming increasingly important.

Limited by the GPU memory, training a large MoE model often
requires tensor parallelism [35] that partitions the large matrix
multiplication in Transformer into smaller chunks and distributes
them to several GPUs for parallel execution. For simplicity, this
paper is based on the context that data parallelism and expert
parallelism are used in training. However, Janus also supports tensor
parallelism and the implementation is flexible to adapt to popular
frameworks such as Megatron-LM[35].

Although Janus is primarily designed for training, the same
design principles can be applied to inference as well, since the com-
munication pattern is similar. Thus, Janus can improve the overall
efficiency of LLMs’ training and inference pipelines, including pre-
training, supervised fintuning [9], RLHF (Reinforcement Learning
with Human Feedback) [27] and online serving. Overall, our future
work is to provide efficient MoE framework support for the entire
LLM production and deployment processes through Janus.

10 CONCLUSION

MoE has been shown to achieve remarkable performance across a
variety of applications. However, training a large-scale MoE model
is non-trivial. To train large-scale MoE models efficiently, we pro-
pose the concept of data-centric paradigm and design Janus.

Data-centric paradigm creatively argues that data can be in-place
and model can be moved in expert parallelism, while people always
consider model is in-place and data is moved in expert parallelism.
Data-centric paradigm provides a new dimension in parallelism.

Janus unifies expert-centric paradigm and data-centric paradigm
and it is communication-optimal. The data-centric paradigm can
reduce traffic volume and make communication workload balanced
under certain conditions. To improve the system efficiency, we care-
fully design the scheduling strategies for the requests of fetching
experts, including asynchronous communication, cache mechanism
in the hierarchical communication, topology-ware priority manage-
ment and prefetching mechanism. With asynchronous communica-
tion, expert computation can be overlapped with the operations of
fetching experts. With the cache mechanism, we reduce the inter-
node communication traffic. By carefully arranging the priority of
requests, we alleviate the contention on the bandwidth of intra-
node links. We achieve further overlap between communication
and computation with prefetch mechanism. All of these strategies
are helpful to reduce training time. Our experiment has proven the
effectiveness of our system.

This work does not raise any ethical issues.
Acknowledgments. We sincerely thank our shepherd Amar Phan-
ishayee and anonymous reviewers for their valuable feedback on
this paper. This work is sponsored by National Natural Science
Foundation of China (N0.62072269). Jessie Hui Wang is the corre-
sponding author. Juncai Liu is with Institute of Network Sciences
and Cyberspace (Tsinghua University), and also with Beijing Na-
tional Research Center for Information Science and Technology.

Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

REFERENCES

(1]
[2

(3]
(4]
(5]

(6

=

[10]

[11]

[12

[13]

[14]

[15]

=
&

[17]

[18]

[19

[20]

[21]

[22]

[23]

Anthropic claude. https://www.anthropic.com/index/introducing-claude.
BytePS. https://github.com/bytedance/byteps.

NVIDIA A100. https://www.nvidia.com/en-us/data-center/a100/.

Tutel. https://github.com/microsoft/tutel/.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam
Shleifer, Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al.
Efficient large scale language modeling with mixtures of experts. arXiv preprint
arXiv:2112.10684, 2021.

Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand,
Daniel Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, et al.
Pathways: Asynchronous distributed dataflow for ml. Proceedings of Machine
Learning and Systems, 4:430-449, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877-1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling
instruction-finetuned language models. arXiv preprint arXiv:2210.11416, 2022.
Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xI: Attentive language models beyond a fixed-length
context. arXiv preprint arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui
Wang, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens.
arXiv preprint arXiv:2307.02486, 2023.

Ke Ding, Xin Dong, Yong He, Lei Cheng, Chilin Fu, Zhaoxin Huan, Hai Li, Tan
Yan, Liang Zhang, Xiaolu Zhang, et al. Mssm: a multiple-level sparse sharing
model for efficient multi-task learning. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2237-2241, 2021.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin,
Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al.
Glam: Efficient scaling of language models with mixture-of-experts. In Interna-
tional Conference on Machine Learning, pages 5547-5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity, 2021.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi,
and Qin Li. Fastermoe: modeling and optimizing training of large-scale dynamic
pre-trained models. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 120-134, 2022.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong
Wang, Rafael Salas, Jithin Jose, Prabhat Ram, et al. Tutel: Adaptive mixture-of-
experts at scale. arXiv preprint arXiv:2206.03382, 2022.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A
unified architecture for accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 463-479, 2020.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard:
Scaling giant models with conditional computation and automatic sharding.
arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer.
Base layers: Simplifying training of large, sparse models. In International Confer-
ence on Machine Learning, pages 6265-6274. PMLR, 2021.

Dingcheng Li, Xu Li, Jun Wang, and Ping Li. Video recommendation with multi-
gate mixture of experts soft actor critic. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 1553-1556, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10012-10022, 2021.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1-15, 2021.

498

[24

[25

[26

[27

[28

[29

[30

o
=

(32

(33]

[34

[36

[37

[38

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

Xiaonan Nie, Shijie Cao, Xupeng Miao, Lingxiao Ma, Jilong Xue, Youshan Miao,
Zichao Yang, Zhi Yang, and Bin Cui. Dense-to-sparse gate for mixture-of-experts.
arXiv preprint arXiv:2112.14397, 2021.

Xiaonan Nie, Pinxue Zhao, Xupeng Miao, and Bin Cui. Hetumoe: An effi-
cient trillion-scale mixture-of-expert distributed training system. arXiv preprint
arXiv:2203.14685, 2022.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence
modeling. arXiv preprint arXiv:1904.01038, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 35:27730-27744, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019.

Zhen Qin, Yicheng Cheng, Zhe Zhao, Zhe Chen, Donald Metzler, and Jingzheng
Qin. Multitask mixture of sequential experts for user activity streams. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3083-3091, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani
Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe:
Advancing mixture-of-experts inference and training to power next-generation
ai scale. In International Conference on Machine Learning, pages 18332-18346.
PMLR, 2022.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:
Memory optimizations toward training trillion parameter models. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1-16. IEEE, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Ge-
offrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang Hao, Yangfan Bai, HuaChao
Wu, Xinxuan Wu, Haoyi Xiong, Dianhai Yu, and Yanjun Ma. Se-moe: A scalable
and efficient mixture-of-experts distributed training and inference system. arXiv
preprint arXiv:2205.10034, 2022.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language
models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang,
Jie Zhang, Jiamang Wang, Yong Li, et al. M6-t: Exploring sparse expert models
and beyond. arXiv preprint arXiv:2105.15082, 2021.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez,
et al. Alpa: Automating inter-and intra-operator parallelism for distributed deep
learning. arXiv preprint arXiv:2201.12023, 2022.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang,
Tuo Zhao, and Jianfeng Gao. Taming sparsely activated transformer with sto-
chastic experts. arXiv preprint arXiv:2110.04260, 2021.

https://github.com/bytedance/byteps
https://www.nvidia.com/en-us/data-center/a100/
https://github.com/microsoft/tutel/

	Abstract
	1 Introduction
	2 Background
	2.1 Transformer and MoE Model
	2.2 Expert Parallelism

	3 Observation and Motivation
	3.1 Observation on Expert-centric Paradigm
	3.2 Data-centric Paradigm

	4 Overview of Janus
	5 System Design
	5.1 Fine-grained Task Scheduling
	5.2 Topology-aware Priority Strategy
	5.3 Provident Prefetch Strategy

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Ablation Study
	7.3 End-to-End Performance
	7.4 Sensitivity analysis
	7.5 Unity of data-centric paradigm and expert-centric paradigm in Janus

	8 Related Work
	9 Discussion
	10 Conclusion
	References

