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Abstract
Large language model (LLM)-based applications consist of

both LLM and non-LLM components, each contributing to

the end-to-end latency. Despite great efforts to optimize

LLM inference, end-to-end workflow optimization has been

overlooked. Existing frameworks employ coarse-grained or-

chestration with task modules, which confines optimizations

to within each module and yields suboptimal scheduling

decisions.

We propose fine-grained end-to-end orchestration, which

utilizes task primitives as the basic units and represents each
query’s workflow as a primitive-level dataflow graph. This

explicitly exposes a much larger design space, enables opti-

mizations in parallelization and pipelining across primitives

of different modules, and enhances scheduling to improve

application-level performance. We build Teola, a novel or-

chestration framework for LLM-based applications that im-

plements this scheme. Comprehensive experiments show

that Teola can achieve up to 2.09x speedup over existing

systems across various popular LLM applications.

1 Introduction
Large language models (LLMs) and their multi-modal vari-

ants have revolutionized user query understanding and con-

tent generation. This breakthrough has transformed many

traditional and emerging applications. For instance, some

search engines have integrated LLMs into their query pro-

cessing pipelines, enhancing user experiences [3, 13]. Ad-

ditionally, AI agents, a new paradigm for human-machine

interaction, have led to new applications such as emotional

companionship [4] and personalized assistants [16].

Despite being the most intelligent component in the ap-

plications, LLMs by themselves often cannot satisfy the di-

verse and complicated user requirements. Examples include

knowledge timeliness and long context understanding, for

which LLMs cannot perform well due to their design. If not

properly handled, these problems can easily cause the well-

known hallucination issue [32]. To mitigate such problems,

many techniques have been proposed, including RAG (Re-

trieval Augmented Generation) [40, 48], external function

calls [11, 33, 38] and even multiple LLM interactions. Popu-

lar frameworks such as Langchain [9] and LlamaIndex [1]

support integrating various modules and building the end-

to-end pipelines mentioned above.
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Figure 1. Latency breakdown of each task module for various ap-

plications in Figure 2 using LlamaIndex [1]. The LLM synthesizing

module time is divided into prefilling and decoding.

While significant efforts have been made to optimize LLM

inference across various aspects [20, 24, 39, 68, 72], little at-

tention has been paid to the end-to-end performance of LLM-

based applications composed of diverse modules. Figure 1

illustrates the execution time breakdown of several popular

LLM-based applications with Llamaindex [1]. The non-LLM

modules account for a significant portion of the end-to-end

latency, and in some cases (Document question answering

with RAG) even more than 50%. Optimizing end-to-end per-

formance, however, faces more difficulties than one would

expect in current orchestration frameworks [1, 8, 9, 12].

They organize the workflow as a simple module-based chain

pipeline (see Figure 3a), where each module independently

and sequentially handles a high-level task using its own exe-

cution engines (e.g. vLLM [39] for LLM inference). Despite

its ease of use, this coarse-grained chaining scheme signifi-

cantly limits the potential for workflow-level joint optimiza-

tion across modules, as they treat each module as a black-box

(§2.2). Additionally, the decoupling of frontend orchestra-

tion and backend execution implies that request scheduling

cannot optimize for the application’s overall performance,

forcing it to instead optimizing per-request performance,

which may actually degrade the overall efficiency (§2.3).

In this paper, we argue for a finer-grained exposition and

orchestration of LLM-based applications, which can be the

bedrock of end-to-end optimization. Rather than using the

module-based chaining, we orchestrate with a primitive-level

dataflow graph, where the task primitive serves as the basic
unit. Each primitive is a symbolic node in the graph respon-

sible for a specific primitive operation, and has a metadata

profile to store its key attributes (§2.2). This primitive-level
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Figure 2. Real-world LLM-based application workflows, showcasing typical definition styles in current frameworks [1, 9, 12].

graph allows us to exploit each primitive’s properties and

their interactions to optimize the graph, identifying an exe-

cution plan with the best end-to-end latency (§2.2). Further-

more, the graph captures request correlations and dependen-

cies among different primitives as well as their topological

depths, which enables application-aware scheduling and

batching with better end-to-end performance (§2.3).

Following this insight, we build Teola, a primitive-based

orchestration framework for serving LLM-based application.

Teola features two main components: 1) Graph Optimizer: It

parses each user query into a specific primitive-level dataflow

graph, incorporating the query’s input data and configura-

tions along with the developer’s pre-defined coarse-grained

workflow. Subsequently, targeted optimization passes are

applied to the primitive graph to generate an efficient exe-

cution graph for runtime execution. 2) Runtime Scheduler:

Utilizing a two-tier scheduling mechanism, the upper tier

schedules each query’s execution graph, while the lower tier

is managed by individual engine schedulers. The lower tier

batches and processes primitives from queries’ execution

graphs that request the same engine, taking into account

the relationships between requests from each primitive to

achieve application-aware scheduling.

We implement Teola’s prototype primarily using Ray [52]

for distributed scheduling and execution, with various li-

braries for the execution engines. We evaluate Teola with

diverse datasets and applications, including search engine-

empowered generation and document question answering

using both naive and advanced RAG. Comprehensive testbed

experiments demonstrate that Teola can achieve up to a 2.09x

speedup in end-to-end latency compared to existing schemes,

including our distributed implementation of Llamaindex [1]

with Ray and its advanced version that incorporates module

parallelization and enhanced LLM execution.

Our contributions are summarized as follows:

• We identify the limitations of current LLM-based orches-

tration frameworks, i.e. coarse-grained module-based or-

chestration that restricts optimization potential, and mis-

match between request-level scheduling and end-to-end

application performance.

• We propose a fine-grained orchestration that represents

query workflows as primitive-based dataflow graphs, en-

abling larger design space for end-to-end optimization in-

cluding graph optimization (i.e., parallelization and pipelin-

ing) and application-aware scheduling.

• We design and implement Teola to show the feasibility and

benefit of our approach. Experiments using popular LLM

applications demonstrate Teola’s superior performance

over current systems.

2 Background and Motivation
2.1 LLM-based Applications
A primer on LLM. Current LLMs are built upon transform-

ers, which rely on the attention mechanism to effectively

capture the long context in natural languages [61]. LLM infer-

ence, which this paper focuses on, is autoregressive: in each

forward pass the model produces a single new token—the

basic unit of language modeling, which the becomes part of

the context and is used as input for the subsequent iterations.

To avoid redundant attention computation of preceding to-

kens in this process, a key-value (KV) cache is used which

becomes a critical source of memory pressure [39, 68].

LLM inference involves two phases: prefilling and decod-

ing. Prefilling produces the very first output token by pro-

cessing all input tokens (instruction, context, etc.), and is

clearly compute-bound. After prefilling, the decoding phase

iteratively generates the rest of the output based on the KV

cache, and is memory-bound as in each iteration only the

new token from the previous iteration needs to be processed.

LLMapps aremore than just LLM.Despite their great gen-
eration capabilities, LLMs are not a panacea. Their training

datasets are inevitably not up-to-date, leading to knowledge

gaps and hallucination issues [8, 40]. They also lack abilities

to interact directly with the environment, that is they are

not directly capable of sending an email though it can draft

the email message [30, 56, 63]. Thus real-world applications

often need to integrate additional tools with LLMs to be

practically usable.

We show in Figure 2 four typical LLM-based applications

(apps). Figure 2a demonstrates a search engine-empowered

generation app, where the LLM utilizes the search engine
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to answer questions that are beyond its knowledge scope [3,

35, 58]. It employs a proxy and a judge model to determine

if the search engine needs to be called. Figure 2b illustrates

a generic LLM agent, where the LLM interacts with various

tool APIs to execute the plan it formulates (e.g. draft and

send emails using the user’s account credentials) [30, 63]. Fig-

ures 2c and 2d showcase document question answering (QA)

with naive and advanced RAG, respectively. RAG is arguably

the most popular technique to enhance LLM apps with many

production uses [8, 12]. Here the documents uploaded by

users are ingested as chunks into the vector database as the

domain knowledge base [8, 12, 40], after processed by the

embedding models. This step is known as indexing. The LLM

uses the relevant chunks retrieved from the vector database

to generate answers. The advanced version (Figure 2d) lever-

ages LLM-based query expansion to refine and broaden new

queries [26, 34], thereby enhancing search accuracy, and

subsequently reranks all retrieved chunks for the expanded

queries to synthesize a precise final answer. As seen before in

§1, the LLM may not be the only performance bottleneck of

these complex application pipelines. Carefully orchestrating

the various components of the workflow is thus critical.

2.2 Fine-grained Orchestration of LLM Apps
Many frameworks such as LlamaIndex [1], Langchain [9],

and enterprise solutions such as PAI-RAG [12] and Azure-

RAG [8] have emerged to facilitate the creation and orchestra-

tion of LLM applications. They naturally adopt module-level
orchestration in the sense that each app is defined and sched-

uled as a simple chain of modules, as depicted in Figure 3a.

Each module is executed independently with backend en-

gines. Coarse-grained module-level chaining is easy to use,

but inherently limited for optimizing the complex workflows

for best performance. It overlooks the larger design space of

jointly optimizing the modules, especially by exploiting the

intricate dependencies among the internal operations of the

individual modules.

The central thesis of this paper is to advocate for fine-

grained exposition and orchestration of LLM apps in order

to improve end-to-end performance. Consider an alterna-

tive representation of the same app workflow (Figure 3a)

shown in Figure 3b. Instead of working with modules, we

decompose each module into fine-grained primitives as the
basic unit of orchestration (i.e. nodes in the graph). The in-

dexing module, for example, is decomposed into embedding

creation and data ingestion primitives, and query expansion

is decomposed into prefilling and decoding primitives just

like the LLM synthesizing module.

Moreover, the dependency among these primitives are

explicitly captured in this dataflow graph, enabling the ex-

ploration of more sophisticated joint optimizations across

primitives and modules. As a simple example, it is apparent

that the embedding creation and data ingestion primitives
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{  'input': [query, context]
   'output': DONE_FLAG
   'attributes': {

'prompt': "answer the question with the
context.\n question:<query>\n context:
<context>.",

'batch_size':1,'backend':“LLM”,...}
}

{  'input': doc_chunks
   'output': embeddings
   'attributes': {

'batch_size: 32, 'chunk_size":
384, 'backend':"Embedding",

'anno': batchable | splittable''}
}

Figure 3. Workflow expression and execution comparison of ex-

isting schemes and Teola. (a) Module-level workflow in current

schemes. Note the arrows here merely indicate the execution order,

not the dependency. (b) Primitive-based dataflow graph in Teola

(limited metadata of nodes shown in the interest of space). Arrows

here represent the dependency between primitives. (c) Execution

graph after optimization in Teola.

can be executed in parallel with prefilling and decoding prim-

itives for query expansion in Figure 3b, since their inputs

are independent. Each primitive’s input/output relationship,

along with other key information (see §2.3 for some exam-

ples), is encoded as node attributes in the graph.

We can then optimize this primitive-level dataflow graph

to identify the best execution plan of the entire workflow

with the lowest end-to-end latency. Figure 3c shows the opti-

mized execution graph corresponding to the dataflow graph

in Figure 3b. Specifically, given that query expansion creates

multiple new queries, the corresponding decoding primitive

can run in a pipeline fashion with multiple partial decoding
primitives, each generating a new query and sending it to

the subsequent primitive (embedding creation) right away

without waiting for all queries to come out. By the same

token, the prefilling primitive of LLM synthesizing can be

divided into a partial prefilling first that operates on the sys-

tem instruction and user query, which can run in parallel

with indexing before search and reranking.

Thus, primitive-level dataflow graph allows us to explore

various parallelization and pipelining opportunities across

primitives that are not visible in existing module-based or-

chestration. The gain is significant: in our example (Figure 3),

the overall execution time is reduced from 4.1s to 2.4s.

2.3 Application-Aware Scheduling and Execution
Another limitation of current LLM application orchestration

is the request-level optimization of the backend execution
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Figure 4. Comparison between request-level and application-level

scheduling and execution.

engines, which is a mismatch with the application-level per-

formance that the user perceives. Suppose that Triton [17],

a popular serving engine, is used to serve the embedding

model for the indexingmodule. The Triton engine treats each

request uniformly with a fixed batch size of 4 as shown in

Figure 4a. Without any application-level information, we can

only optimize for the per-request latency with reasonable

but sub-optimal GPU utilization.

Now given that these embedding requests come from the

same module, it is obvious that the execution engine should

optimize for the total completion time instead of per-batch

latency. Therefore, a better strategy is to use a larger batch

size of say 16 to fully utilize the GPU. With 48 requests in

total (for 48 document chunks), the total completion time is

reduced from 1.8s to 1.35s, a 1.3x speedup as seen in Figure 4a,

even though the per-batch latency is slightly higher.

The above toy example utilizes request correlation of an

individual primitive. Another type of information we can

exploit is request dependency across primitives. Consider the

LLM synthesizing module, which makes a series of LLM calls

in a tree-based synthesis mode in Figure 4b. These requests

are executed with a batch size of 2 in conventional request-

level scheduling, again to optimize per-request latency. In

contrast, given that they form a dependency tree of depth of

2, the LLM execution engine can process requests at the same

depth with varying batch sizes, leading to a 1.4x speedup

overall albeit longer per-batch latency.

To sum up, fine-grained orchestration also bridges the

gap from the execution engine’s request-level optimization

and enables application-aware scheduling, by using request

correlation and dependency information from the primitive

dataflow graph (as node attributes) to further optimize end-

to-end performance.

3 Design Overview
3.1 Architecture
Teola is a novel orchestration framework to optimize the ex-

ecution of LLM-based applications with primitive operations

as the basic unit.

Figure 5 depicts Teola’s architecture. In the offline stage

①, developers register execution engines for an app, such

question = ‘what is LLM?’
docs = [‘chapter1.txt’],
chunksize= 300,
synthesis_mode=‘refine’
……

Execution Engine
Registry & Profile

Optimization 
Strategies

Workflow 
Template

Frontend Graph Optimizer

Runtime

Primitive
Operations:

Backend
Engines

Graph
Scheduler

Engine
Scheduler

Engine
Instance:
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Figure 5. System Overview of Teola.

as those for embedding models, LLMs, and database opera-

tions, along with their latency profiles for various input sizes

(e.g., batch size and sequence length). They also provide a

workflow template that outlines the app’s components (e.g.,

query expansion and LLM generation) and their execution se-

quence, similar to tasks modules in current frameworks [1, 9].

Optionally, developers may specify optimization strategies

for certain primitive operations. Once the app is configured

and deployed, the system is ready for online serving.

In the online stage, upon receiving a query with specific

input data and workflow configurations, Teola creates a

primitive-based dataflow graph (p-graph) ②, applies relevant

optimizations to generate the execution graph (e-graph), and
submits the e-graph to the runtime ③. The runtime accu-

rately tracks and efficiently schedules the execution of the

e-graph’s primitives on the appropriate backends. Finally,

the results are returned to the frontend upon completion ④.

3.2 APIs
Listing 1 presents a simplified usage example of Teola, high-

lighting its main components as described below.

Execution engines. Execution engines handle requests for

models or operations from workflow components (line 5).

They can be model-free or model-based. Model-free engines,

such as databases, are primarily CPU-based and do not in-

volve DNN models. On the other hand, model-based engines

can deploy various DNN models, including BERT-family

models [25] for embedding and LLMs for generation. A sin-

gle engine can serve multiple components with different

purposes, such as the shared LLM engine for query expan-

sion and LLM synthesizing in Figure 2d.
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1 from Teola.app import APP ,Node
2 from Teola.executor import Engine
3 from Teola.graph import OPT_Pass ,Graph
4 # Register executor engines (e.g. LLM).
5 LLM=Engine("LLM",executable=llm_exec ,config=config_llm ,

resource ={"GPU":2}, instances =2)
6 # Register optimization passes.
7 OPT_Pass.register("pipelining",pipline_pass)
8 app=APP.init() # Init an application
9 # Resiger template components with specification
10 query_expand=Node("LLM",in_kwargs ,out_kwargs ,
11 anno="splitable",config=config_expand)
12 embedding=Node("Embedding",in_kwargs ,out_kwargs ,
13 anno="batchable",config=config_embed)
14 # Omit other components ...
15 generation=Node("LLM",in_kwargs ,out_kwargs ,
16 anno=None ,config=config_gen)
17 # Declare the dependency.
18 query_expand >>embedding >>... >>generation
19 # Update the app's workflow template.
20 app.update_template ([ query_expand ,...])
21 # Construct and optimize graph based on query and config.
22 e_graph=Graph.optimize(app ,query ,config ,OPT_Pass)
23 # Sumbit to runtime and schedule.
24 e_graph.schedule ()

Code Listing 1. Simplified usage example of Teola.

Workflow template. A workflow template defines the es-

sential components for an app and their execution flow (line

8-20). Developers specify components involved in a work-

flow, outlining required engines, roles, and input-output con-

figurations. These components can be further annotated with

optimization hints, such as batchable (for batched inputs

that operate independently) and splittable (for output that
can be divided into independent partial outputs). The >> op-

erator establishes execution sequence between components,

ensuring dataflow correctness. The resulting template serves

as the basis for constructing and optimizing a finer-grained

graph for queries with different configurations.

Graph optimization. For each query, a finer-grained p-

graph with primitive nodes is constructed based on the

query-specific data, configuration, and predefined workflow

template (line 22). Teola then utilizes built-in optimization

passes for primitive operations and patterns to identify an

optimized execution plan and generate an e-graph (§4) for

execution. Developers can also register custom optimizations

through a provided interface (line 7).

Declarative query.A declarative interface is offered for sub-

mitting queries to a deployed app. Beyond specifying queries

(i.e., question and context), users can customize the workflow

(Figure 5), allowing for parameter tuning of components (e.g.,

document chunk size for indexing, LLM prompt template

and LLM synthesis mode) to meet performance expectations.

4 Graph Optimizer
Graph optimizer generates a fine-grained, per-query repre-

sentation (p-graph) by combining query information and

workflow template. This p-graph, composed of symbolic

primitive nodes, enables optimization strategies to produce

an efficient e-graph for execution.

Type Description

Reranking

Compute and rank the relevance scores for the query

and context pairs.

Ingestion Store embedding vectors into vector database

Searching Perform vector searching in the database

Embedding Create embedding vectors for docs or questions

Prefilling The prefilling part of LLM inference

Decoding The decoding part of LLM inference

Partial Prefilling

Prefilling for partial prefix of a prompt (e.g. instruction,

context, question)

Full Prefilling Prefilling for rest part of a prompt after a partial prefilling

Partial Decoding Part of full decoding for partial output

Condition Decide the conditional branch

Aggregate Aggregate the results from multiple primitives

Table 1. Primitive examples in Figure 2d. White backgrounds de-

note common operations, blue for decomposed operations, and

gray for control flow operations.

4.1 p-Graph
Primitives. Relying solely on high-level components, as

discussed in §2.2, can oversimplify the intricate relationships

between operations and expose limited information and flex-

ibility. To address this, we introduce a refined abstraction:

the task primitive (primitive for short). Akin to the operation

nodes in TensorFlow [18], symbolic primitives at the work-

flow level enhance granularity in representation and provide

valuable information for optimization prior to execution.

Specifically, as shown in Table 1, a primitive can corre-

spond to the functionality of a standard operation within

a registered execution engine (e.g., embedding creation in

embedding engines or context ranking in reranking engines)

or represent a fine-grained decomposed operation. For in-

stance, LLM inference is decomposed into Prefilling and

Decoding, with Partial Prefilling and Full Prefilling
constituting LLM prefilling, and Partial Decoding manag-

ing different parts of full decoding. Additionally, primitives

can be control flow operations such as aggregation or con-

ditional branching (i.e., Aggregate and Condition). Each
primitive includes a metadata profile detailing its inputs, out-

puts, parent nodes, and child nodes, forming the basis for

graph construction. This profile also contains key attributes

such as batch size for DNNs or prompts for LLMs, as well as

the target execution engine.

p-Graph construction. The optimizer converts the orig-

inal workflow template T = (T𝑁 ,T𝐸) with query-specific

configuration C = (T𝑁 , C𝑁 ) into a more granular p-graph

G = (V𝑁 ,V𝐸) as outlined in Algorithm 1, where T𝑁 repre-

sents components, T𝐸 dependencies, and C𝑁 user configu-

rations. The process decomposes each template component

into explicit symbolic primitives based on the configuration,

creating a sub-primitive-level graph with well-defined de-

pendencies. For instance, the LLM synthesizing module in

refine mode with 3 context chunks is transformed into a sub-

graphwhere 3 pairs of Prefilling and Decoding primitives

are chained and configured with corresponding metadata.

The final resulting p-graph preserves the original workflow

5



Algorithm 1 Graph transformation and optimization

1: function GraphTransform(T, C)
2: V𝑁 ← {}; V𝐸 ← {} ⊲ primitives and their data dependency into

# Decompose each template component with configuration into
# a sub-graph with primitives and maintain sub-graph dependency

3: for each 𝑡 ∈ T𝑁 do
4: 𝑃𝑟𝑖𝑚𝑠, 𝐸𝑑𝑔𝑒𝑠 ← DecomposeComponent(𝑡, C)
5: 𝑃𝑟𝑖𝑚𝑠 ← Configure(𝑃𝑟𝑖𝑚𝑠, C)
6: V𝑁 .extend(𝑃𝑟𝑖𝑚𝑠 ) ; V𝐸 .extend(𝐸𝑑𝑔𝑒𝑠 )

# Maintain template’s original component dependency
7: for each (𝑡𝑖 , 𝑡 𝑗 ) ∈ T𝐸 do
8: 𝑡𝑎𝑖𝑙𝑝 ← GetTailPrim(𝑡𝑖 ) ; ℎ𝑒𝑎𝑑𝑝 ← GetHeadPrim(𝑡 𝑗 )
9: V𝐸 .append( (𝑡𝑎𝑖𝑙𝑝,ℎ𝑒𝑎𝑑𝑝 ) )
10: return G𝑝 = (V𝑁 ,V𝐸 ) ⊲ return primitive-level p-graph

11: function GraphOpt(G𝑝 ,P)
# G𝑝 for p-graph, P for profile of execution engines

12: G𝑒 ← PrunDependency(G𝑝 ) ⊲ Pass 1

13: G𝑒 ← StageDecompose(G𝑒 , P) ⊲ Pass 2

14: G𝑒 ← PrefillingSplit(G𝑒 ) ⊲ Pass 3

15: G𝑒 ← DecodingPipeling(G𝑒 ) ⊲ Pass 4

16: return G𝑒 ⊲ return optimized e-graph

dependencies while providing a more detailed view of the

workflow’s inner workings.

4.2 Optimization
As mentioned in §2.2, Teola focuses on maximizing paral-

lelism in distributed execution rather than single-point op-

timization or acceleration (orthogonal and discussed in §9).

Specifically, the optimizer identifies opportunities for prim-

itive parallelism (parallelization) and pipeline parallelism

(pipelining), employing a set of static, rule-based optimiza-

tions.

Exploitable opportunities. Firstly, the original dependen-
cies inherited from the workflow template, which only de-

pict a high-level sequence of components, may introduce

redundancy in the fine-grained p-graph. To maximize paral-

lelization, it is essential to analyze and prune unnecessary

dependencies, thereby freeing independent primitives and

creating parallel dataflow branches (Pass 1). Additionally,
compute-intensive primitives can be broken down into mul-

tiple pipelining stages, where feasible, enabling them to be

executed concurrently with subsequent primitives (Pass 2).
Furthermore, we have observed that the core of the work-

flow, the LLM, has exploitable special attributes. Specifically,

two key attributes can be leveraged: (1) causal prefilling: This
allows the LLM’s prefilling to be split into dependent parts,

enabling parallelization of partial prefilling with preceding

primitives (Pass 3), and (2) streaming decoding output: The
auto-regressive and partial output of specific LLM decoding

can be pre-communicated as input to the downstream primi-

tives, creating additional pipelining opportunities (Pass 4).
Optimization passes. Based on the above analysis, the fol-

lowing optimization passes are integrated and can be applied

to the p-graph to optimize end-to-end workflow execution:

⊲ Pass 1: Dependency pruning. To increase parallelization

potential, we eliminate unnecessary dependencies and

identify independent dataflow branches for concurrent ex-

ecution by examining each task primitive’s inputs with its

current upstream primitives. Redundant edges are pruned,

ensuring that remaining edges represent only data depen-

dencies, which may detach certain task primitives from

the original dependency structure. For example, primitives

in query expansion and embedding modules are detached

to form a new branch in Figure 3c.

⊲ Pass 2: Stage decomposition. For batchable primitives that

process data exceeding the engine’s maximum efficient

batch size (i.e., the size beyond which throughput does not

increase), they are decomposed into multiple stages, each

handling a sub-micro-batch and pipelining with down-

stream batchable primitives. While more aggressive di-

vision may increase pipelining degree, finding the optimal

split size is time-consuming. Moreover, adjacent batch-

able primitives lead to an exponential search space, which

is impractical for latency-sensitive scenario. To balance

resource utilization and execution efficiency, we only ex-

plicitly segment a primitive into multiple stages when its

input size reaches the maximum efficient batch size. An

Aggregate primitive is added at the end of pipelines to ex-

plicitly synchronize and aggregate the results if necessary.

⊲ Pass 3: LLM prefilling split. In LLM prefilling, a full prompt

consists of components such as system/user instructions,

questions, and context. Within a workflow, some prompt

parts may be available in advance (e.g., user instructions or

questions), while others may not be (e.g., retrieved context

from database in RAG). Instead of waiting for all compo-

nents, available components of a prompt can be oppor-

tunistically pre-computed as they become ready, while

respecting the causal attribute of attention computation,

thus enabling partial prefilling parallelization.

⊲ Pass 4: LLM decoding pipeling. During the decoding pro-

cess of LLM, tokens are generated incrementally. Once a

coherent output (e.g., a new rewritten sentence in query

expansion) is available, it can be promptly forwarded to

downstream batchable primitives, avoiding delays asso-

ciated with waiting for full decoding. To enable this opti-

mization, the LLM call must be annotated as splittable,
indicating that its outputs can be semantically divided

into distinct parts. The corresponding parser monitors the

progressive, structured output (e.g., JSON) of the decoding

process, extracting and forwarding complete pieces of a

partial decoding to successors as soon as they become

available.

Optimization procedure. The optimizer iteratively tra-

verses the p-graph, matching primitive nodes to the pattern

of each optimization pass. When a match is found, the cor-

responding pass is applied, and the relevant primitives are

modified accordingly, as outlined in Algorithm 1. This pro-

cess continues until no further optimizations are possible.
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Figure 6. An illustrative optimized e-graph of a query for the advanced RAG-based document QA with a refine synthesis mode. (PD: partial

decoding; annotated computed prompt part for Partial/Full Prefilling; primitive metadata omitted; block length not indicative of execution

time.)

To reduce overhead, a cache can be employed to store and

reuse the results of optimized subgraphs.

An example. Figure 6 presents an optimized e-graph for

the app example shown in Figure 2d. In this optimized e-

graph, query expansion module generates three new queries

to enhance searching process, and the top three retrieved

chunks are fed into the LLM synthesizing module. The LLM

synthesizing module operates in refinemode, first generating

an initial answer using the top chunkwith a QA-style prompt

template. It then refines the candidate answer twice using the

remaining two chunks with a refine-style prompt template.

The different passes applied by the optimizer are annotated

in the figure for clarity.

5 Runtime Scheduling
Teola utilizes a two-tier scheduling mechanism at runtime.

The upper-tier graph scheduler dispatches primitive nodes

of each query’s optimized e-graph. The lower tier consists

of engine schedulers that manage engine instances and fuse

primitive requests from queries for efficient execution. Sepa-

rating graph scheduling and operation execution enhances

scalability and extensibility for Teola.

5.1 Graph Scheduler
The graph scheduler closely tracks the status of each query’s

e-graph and issues primitive nodes as their dependencies

are met. It evaluates node in-degrees and dispatches nodes

to the appropriate engine scheduler when in-degrees reach

zero. Note that the graph scheduler dispatches the node itself

rather than its associated requests, ensuring that the lower

scheduler can identify requests originating from a primitive,

instead of treating them independently like in existing frame-

works (see §2.3). Upon completion of a primitive’s execution,

the scheduling thread is notified via RPC calls, and the output

is transferred. The thread then decrements the in-degrees of

downstream primitives, preparing them for execution.
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depth:3 depth:2 depth:1
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(a) Blind batching.
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Elasped time to trigger the next node: left: 0.8s right: 0.8s
LLM Engine（scenario 2）

(b) Topology-aware batching.

Figure 7. An illustrative comparison of two batching schemes for

an LLM instance with a maximum token size of 1024. Assume each

Prefilling or Partial/Full Prefilling input contains 512 tokens, with a

latency of 0.5s for 512 tokens and 0.8s for a batch of two 512-token

input.

Additionally, a dedicated per-query object store manages

intermediate outputs. This store acts as both an input repos-

itory for pending primitives and offers a degree of fault

tolerance, safeguarding against operation failures.

5.2 Engine Scheduler
Execution engine instances are managed by dedicated en-

gine schedulers, enabling independent execution of primitive

nodes mapped to different engine types. The main challenge

is efficiently fusing primitives that request the same engine.

With an optimized e-graph, a query may dispatch multiple

primitive nodes simultaneously to an engine scheduler or

have several pending primitive nodes in the queue, especially

when components share the same engine, such as the proxy

and judge modules in Figure 2a or the query expansion and

LLM synthesizing modules in Figure 2d using the same LLM.

Strawman solution and limitation: blind batching. A
naive approach to handling diverse primitive nodes is to treat

them uniformly. A engine scheduler dynamically batches

associated primitive requests from the pending queue using
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Algorithm 2 Topology-aware batching

1: Event 1: After getting the optimized e-graph G for a query:
# Determine node’s depth following a reversed topological sort.

2: G′ ← RevTopoSort(G) ; InitDepth(G′ )
3: for 𝑣 ∈ G′ do
4: for 𝑝 ∈ 𝑣.𝑝𝑎𝑟𝑒𝑛𝑡𝑠 do
5: 𝑝.𝑑𝑒𝑝𝑡ℎ ← max(𝑝.𝑑𝑒𝑝𝑡ℎ, 𝑣.𝑑𝑒𝑝𝑡ℎ + 1)
6: Event 2: On the scheduling period of an Engine Scheduler:
7: # Form the batch based on primitives’ depth and relationship
8: 𝑚𝑎𝑥_𝑏𝑠 ← GetConfigBatchsize(); 𝑏𝑎𝑡𝑐ℎ ← []
9: B ← group nodes from the same query into buckets from the queue,

sorted by the earliest arrival time of each bucket’s node.

10: for 𝑏 ∈ B do
11: 𝑠𝑙𝑜𝑡𝑠 ←𝑚𝑎𝑥_𝑏𝑠 − 𝑏𝑎𝑡𝑐ℎ.𝑠𝑖𝑧𝑒 ( )
12: if 𝑠𝑙𝑜𝑡𝑠 = 0 then
13: break

14: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← pop associated requests (up to 𝑠𝑙𝑜𝑡𝑠) from each

node with highest depth in 𝑏.

15: remove the nodes whose all associated requests are scheduled.

16: 𝑏𝑎𝑡𝑐ℎ.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 )

a FIFO policy, reaching a predefined maximum batch size

or upon timeout, similar to existing systems [17, 23]. The

batch is then dispatched to an engine instance. However, this

simplistic method overlooks that not all primitive nodes from

the same query equally contribute to graph progression.

As illustrated in Figure 7, for query 1, primitive A and B

requesting the LLM engine enter the queue along with primi-

tive G and H from query 2. Blind batching would batch A and

B, leaving G and H to wait. However, executing primitive B

at this point yields little benefit since B’s child E cannot be is-

sued later due to E’s other untriggered parent D. In contrast,

batching A and H advances both queries’ graph execution,

with B’s delay not bottlenecking query 1.

Our solution: topology-aware batching. The example

highlights the limitations of blind batching, which ignores

the unique contributions of each primitive to the query’s

graph progression. Primitive nodes in a graph vary in topo-

logical depth; delaying lower-depth nodes can reserve re-

sources for more contributive ones, enhancing overall exe-

cution. Besides, it is essential to consider the correlation and

dependency between requests, unlike the approach taken by

existing orchestration (as discussed in §2.3). Combining these

insights, we propose topology-aware batching, a heuristic

solution that leverages the depth of primitive nodes and their
relationships to intelligently guide batch formation.

Concretely, the approach offers two primary benefits. First,

for an individual query, depth information naturally cap-

tures the dependency among different primitives, enabling

straightforward adjustments to the scheduling preferences

with the inherent request correlation in each primitive (see

§2.3). For example, primitives at the same depth can be

executed at the maximum efficient batch size to optimize

throughput and advance the graph. Second, while depth in-

formation may not pinpoint the exact critical path due to

unpredictable latency in real execution, it guides primitive

prioritization for a query (see Figure 7), facilitating efficient

resource utilization across multiple queries.

Algorithm 2 shows the procedure for topology-aware

batching. After obtaining a query’s e-graph, primitive nodes

are reverse topologically sorted and their depths recorded,

with the output node having the smallest depth (Event 1).

When scheduling, primitives from the same query in the

engine scheduler’s queue are grouped into buckets. Within

each bucket, primitives are sorted by depth, prioritizing those

with higher depths. The buckets are then sorted based on the

earliest arrival time within each bucket. Given a slot num-

ber, which represents the pre-determined maximum batch

size (or maximum token size for LLM) that ensures optimal

throughput efficiency, the scheduler iterates through each

bucket. For each bucket, it examines the highest-priority

primitive nodes and, if free slots are available, moves the as-

sociated requests from a primitive into the candidates (Event

2).

6 Implementation
We implement the prototype of Teola with ~5,300 lines of

code in Python. Specifically, we leverage several existing

libraries: (1) Ray [52] for distributed scheduling and execu-

tion; (2) LlamaIndex [1] for pre-processing tasks, such as text

chunking and HTML/PDF parsing; (3) postgresql [15] as the

default database; (4) pgvector [14] as the vector search en-

gine; (5) Google custom search [7] as the search engine, sup-

porting both single and batched requests; and (6) vLLM [39]

as the LLM serving engine, which we additionally modify

to support Partial Prefilling and Full Prefilling in
Table 1.

For the frontend, we provide user interfaces via FastAPI [5]

for submitting queries and user configurations. For the back-

end, the graph scheduler maintains a thread pool to allocate

a dedicated thread for each new query, in order to construct,

optimize and dispatch the e-graph. Beyond the discussion

in §5, each engine scheduler also manages load balancing

across different instances based on various load metrics – pri-

marily the number of executed requests for general engines

and the occupied KV cache slots for LLMs.

Mitigating communication overhead. To reduce commu-

nication overhead in a central scheduler, we use a dependent

pre-scheduling mechanism for adjacent primitives with large

data interactions or the same execution engine. This allows

simultaneous issuance of two dependent primitives, namely

A and B, with B waiting for the output of A. Along with

sending A’s result to the scheduler, an RPC call also sends

the output of A directly to the execution engine of B. This

avoids relaying results through the scheduler before issuing

B, and hence can reduce the communication overhead.
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Figure 8. End-to-end performance of search engine-empowered generation (top), document QA with naive RAG (middle), and document QA

with advanced RAG (bottom). Subtitles for each subfigure indicate the dataset and core LLM.

7 Evaluation
Testbed setup.We allocate model-based engines (e.g., LLMs)

and model-free engines with GPUs and CPU-only resources,

respectively. Each engine instance used for embeddings or

other non-LLM models are each hosted on a single NVIDIA

3090 24GB GPU. For LLMs, each instance of llama-2-7B and

llama-2-13B [60] is deployed on 1 and 2 NVIDIA 3090 GPUs,

respectively. Each instance of llama-30B [59] is deployed

on 2 NVIDIA A800 80GB GPUs. The network bandwidth

between any physical servers is 100 Gbps.

Baseline. To our knowledge, few studies have specifically

focused on optimizing LLM-based workflows in distributed

settings. Therefore, we compare Teola with the following

frameworks based on LlamaIndex [1]:

• LlamaDist: a distributed version of LlamaIndex that we

implemented with Ray, defining a chain of task modules

to construct an application pipeline. Each task module

invokes requests to different distributed backend engines.

This implementation integrates Ray with LlamaIndex’s or-

chestration approach, utilizing the same engines as Teola

but differing in the granularity of orchestration.

• LlamaDistPC (parallel & cache-reuse): an advanced Lla-

maDist variant that examines the predefined pipeline and

manually parallelizes independent modules for concurrent

execution. It also incorporates prefix caching for LLM to

avoid recomputation for partial instructions in the prompt,

as proposed in some previous works [27, 45, 71].

For the request scheduling of deployed engines, we com-

pare two approaches:

• Per-Invocation oriented (PO): We slightly modify the invo-

cation from the orchestration side and make requests in

an invocation as a bundle (essentially adding extra corre-

lation information that is exploited in Teola to enhance

baselines). The engines schedule each bundle at a time,

prioritizing latency preferences for each invocation.

• Throughput oriented (TO): We pre-tune a maximum batch/-

token size for each engine (i.e., increasing the batch size

for DNNs or token size for LLMs by powers of 2 until no

further throughput gain is observed) and employ dynamic

batching strategy [17, 23, 39]. This maximizes the overall

throughput but ignores any relationships among requests.

Applications, models and workloads. Our experiments

cover three applications:

• Search engine-empowered generation (Figure 2a): A search

engine assists a core LLM in generating answers. A smaller

LLM (llama-2-7B) acts as a proxy and judge, formulating

a heuristic answer and determining if a search is needed.

Any search results (top 4 entities) are fed into the core

LLM to synthesize the final answer. Workload requests are
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generated using a Poisson distribution-based synthesis of

web_question [22] and HotpotQA [67] datasets.

• Document QA with naive RAG (Figure 2c): Users input

documents or webpages along with the question. The

app segments the documents into chunks (default chunk

size: 256, chunk overlap:30), embeds them with the bge-

large-en-v1.5 model [66], and stores them in a vector data-

base (postgresql & pgvector). It retrieves the most rele-

vant chunks (default: top 3) to generate a response with

a tree-based mode. The workload (i.e. question and docu-

ments/webpage) is synthesized from Finqabench [6] and

TruthfulQA [44] datasets using a Poisson distribution.

• Document QA with advanced RAG (Figure 2d): Extending

the second app, a query expansion is used (the core LLM)

to rewrite and expand the original query into multiple

new queries (default: 3), improving retrieval accuracy. A

reranker (bge-reranker-large [66]) evaluates the similarity

between retrieved chunks, with each query searching for

16 chunks and determining the top 3 overall. These top

chunks are fed into the core LLM for generation in a refine
mode as mentioned in §4.2.

Unless otherwise specified, the above default configura-

tions are applied. All models are deployed in half precision,

and different core LLMs (7B, 13B and 30B) are experimented.

7.1 End-to-end Performance
We evaluate the performance with different schemes for

various apps, all under the same resource allocation. Each

non-LLM engine is provisioned with a single instance, while

each LLM is provisioned with two instances.

Search engine-empowered generation. Figure 8 (top row)
shows Teola outperforming the other four schemes by up

to 1.79x. Teola’s efficiency is attributed to parallelizable par-

tial prefilling for instructions and questions for both the

judge and core LLM, and effective batching coordination for

different engines. In contrast, LlamaDist executes modules

sequentially and struggles with request scheduling for mul-

tiple queries. PO’s focus on per-invocation latency results

in longer queue times under high request rates, while TO

generally performs better in these scenarios. LlamaDistPC

fails to benefit from parallelization due to the lack of ex-

plicit parallelization across modules. Its prefix caching for

partial instructions (typically around 60 tokens) provides

limited benefit, as prefix caching is most advantageous when

prefixes are significantly longer [2, 71].

Document QA with naive RAG. Figure 8 (middle row)

demonstrates that Teola outperforms the other four schemes

by up to 1.62x at low request rates and 1.46x at high rates.

LlamaDist executes modules sequentially without specific

optimizations while LlamaDistPC enables limited paralleliza-

tion (indexing and query embedding modules) and partial

instruction KV cache reuse, performing slightly better than

LlamaDist. Regarding scheduling, PO is better than TO at

low request rates due to its focus on per-invocation latency,
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Figure 9. Ablation study on graph optimization in document QA

with advanced RAG on truthfulQA dataset using llama-30B as core

LLM. Left: single-query latency averaged over 10 runs. Right: aver-

age latency under varying request loads.

but performance suffers at high rates. Furthermore, the app

introduces intricate request relationships. Both the indexing

and query embedding modules utilize the embedding model.

Meanwhile, the LLM synthesizing module makes three ini-

tial requests followed by a subsequent request to construct

the tree synthesis. If overlooked, these can cause batching

inefficiencies, leading to reduced goodput, similar to TO. Con-

versely, Teola leverages the e-graph, incorporating pipelin-

ing to split compute-heavy tasks like large embeddings for

document chunks, while also exploring more parallelization

opportunities, such as four partial prefilling. Additionally,

Teola’s topology-aware batching captures dependencies and

correlations among requests linked to different primitives,

facilitating effective batching for each engine.

Document QA with advanced RAG. This app is the most

complex in our settings, yet it provides ample opportuni-

ties to demonstrate the effectiveness of Teola. It leverages

aggressive optimization techniques such as parallelization

at different levels (e.g., independent dataflow branches and

partial prefilling for different LLM calls) and pipelining (e.g.,

breaking large embeddings into smaller ones and splitting

the decoding process in query expansion into three partial

decodes), as shown in Figure 6. In contrast, LlamaDist runs se-

quentially with a simple run-to-completion paradigm, miss-

ing opportunities to reduce end-to-end latency. LlamaDistPC

improves parallelization across the indexing and query ex-

pansion modules and reuses partial KV cache but still fails to

explore the full optimization potential like Teola. Addition-

ally, similar to naive RAG, both LlamaDist and LlamaDistPC

struggle to efficiently coordinate requests whether in PO or

TO, whereas Teola performs well. Overall, Teola outperforms

others by up to 2.09x at low request rates and 1.68x at high

request rates, as shown in Figure 8 (bottom row).

7.2 Ablation Study
We show the effectiveness of Teola’s main components from

graph optimization and runtime scheduling perspectives.

Graph optimization. As shown in Figure 9, we compare

the performance of Teola under different scenarios, i.e., with

or without parallelization (Pass 1 & 3) and pipelining (Pass 2

10
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& 4) optimization as mentioned in §4. The left figure shows

the average end-to-end latency of a single query and explic-

itly demonstrates that both parallelization and pipelining

effectively capture optimization opportunities and reduce la-

tency. This holds true as well in a request trace with different

request rates.

Runtime scheduling. Figure 10 illustrates the performance

impact of enabling and disabling topology-aware batching as

discussed in §5.2. The left figure demonstrates its effective-

ness in capturing the varying depths of different primitives

for the same engine and scheduling them with the informed

correlation and dependency information to better meet the

application-level performance. This results in an average

1.15x speedup for single query execution. In multi-query sce-

narios, topology-aware batching remains beneficial. Beyond

single-query efficiency, it effectively fuses contributive prim-

itives across queries, thereby facilitating overall execution

and reducing average latency by up to 19.2%.

7.3 Overhead Analysis
To demonstrate that the overhead incurred by Teola, we pro-

vide a breakdown of latency by profiling the different parts

in the real critical path of execution. This analysis covers doc-

ument QA with advanced RAG on the TruthfulQA dataset at

varying request rates. It includes latency measurements for

graph optimization, communication, queuing, and primitive

execution. The results clearly show that the graph optimiza-

tion overhead is minimal (1.3% ~3%) with optimization cache

reuse, and the communication overhead is low ( 3.1% ~6.2%)

compared to the total latency. As the request rate increases,

more latency is attributed to the queuing time for certain

operations. These indicate that Teola incurs negligible over-

head.

8 Limitations and Future Work.
Dynamic graph.While Teola’s ahead-of-time graph opti-

mization offers benefits, adapting to dynamic patterns like

generationwith reflection [49], iterative retrieval in RAG [48],

and agent-determined workflows [38, 56] is challenging due

to their unpredictable patterns and the difficulty of capturing

the entire primitive-level graph prior to execution.

Coupling with the backends. To enable finer-grained or-

chestration, we had to modify several engine-side mecha-

nisms, such as supporting decomposed primitive operations

and certain batching strategies. These modifications required

extra engineering efforts compared to existing frameworks

like LlamaIndex [1] and Langchain [9] that decouple or-

chestration and execution and work with pluggable engines.

However, these additional efforts enhance performance. Be-

sides, at the interface level, Teola hides optimization details

from users so as to be user-friendly.

Exploitation of critical path. Critical-path information in

the e-graph can be further leveraged. For resource alloca-

tion, we can adjust resources for operations on critical and

non-critical paths to maximize utilization based on work-

load patterns. For request scheduling, prioritizing critical

nodes for specific queries can enhance the current topologi-

cal batching, but this requires accurate online predictions of

critical paths and coordination complexities.

Multi-app co-orchestration. The current design focuses

on a single app but has the potential to be extended for co-

orchestrating multiple apps sharing common engines within

a cluster, such as RAG and LLM dialogue apps. By analyz-

ing their distinct dataflow graphs and requirements, we can

achieve broader system-wide optimizations. Optimizing the

cross applications’ performance is left as the future work.

9 Related Work
LLM inference optimization. LLM inference has garnered

significant attention, with numerous studies focusing on

various optimization directions, including kernel accelera-

tion [24, 28, 65], request scheduling [19, 20, 57, 68], model

parallelism [41, 51, 72], semantic cache [21, 73], KV cache

management [39, 42, 62], KV cache reusing [27, 36, 39, 46,

71] and advanced decoding algorithms [47, 50, 53]. Recent

works [31, 54, 72] disaggregate the deployment of the pre-

filling and decoding phases to increase goodput. This philos-

ophy aligns well with Teola’s decomposition approach and

could be seamlessly integrated. While most works provide

point solutions in the LLM domain, Teola takes a holistic

view, optimizing the entire application workflow and facil-

itating cooperation among diverse components. Thus, the

optimizations in LLM inference would complement Teola’s

efforts.

Frameworks for LLM-based applications. Apart from
frameworks like [1, 2, 9], several studies [37, 38, 43, 71]

focus on optimizing complex LLM tasks involving multi-

ple LLM calls. They explore opportunities such as paral-

lelism and sharing by developing specific programming in-

terfaces or compilers. Moreover, several AI agent frameworks

[10, 29, 30, 37, 43, 56, 63] enable LLMs to autonomously con-

trol workflows, make decisions, select tools, and interact

with other LLMs, reducing the need for human intervention

but introducing specific challenges. Teola is more similar

11



to [1, 2, 9], maintaining an app of various components with

human-defined flow using a primitive-level graph while fo-

cusing on end-to-end execution efficiency. Parrot [43] also

captures the application-level affinity of multiple LLM re-

quests using prompt structure to facilitate joint scheduling.

Orthogonally, Teola focuses on full execution graph opti-

mizations for applications involing both LLM and non-LLM

parts.

ML analytics systems. Existing ML analytics systems, such

as VideoStorm [69], Jellybean [64], Llama [55], and Vulcan

[70], focus on optimizing video analytics pipelines by con-

figuring and placing components across heterogeneous re-

sources. While they are similar to LLM-based workflows, the

latter involves more complex request patterns and flexible

configurations. Besides, video systems often maintain uni-

form pipelines for all queries and overlook coordination be-

tween frontend orchestration and backend scheduling. Teola

addresses these limitations by constructing finer-grained

dataflow graph for orchestration, enhancing execution and

scheduling efficiency, and leveraging LLM-specific attributes.

10 Conclusion
We present Teola, a fine-grained orchestration framework for

LLM-based applications. The core idea is orchestration using

primitive-level dataflow graphs. This explicitly exposes the

attributes of primitive operations and their interactions, en-

abling natural exploration of workflow-level optimizations

for parallel execution. By leveraging the primitive relation-

ships from the graph, Teola employs a topology-aware batch-

ing heuristic to intelligently fuse requests from primitives for

execution. Testbed experiments demonstrate that Teola can

outperform existing schemes across different applications.

12
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