
StreamRL: Scalable, Heterogeneous, and Elastic RL for
LLMs with Disaggregated Stream Generation

Yinmin Zhong1 Zili Zhang1 Xiaoniu Song2 Hanpeng Hu2
Chao Jin1 Bingyang Wu1 Nuo Chen2 Yukun Chen2 Yu Zhou2

Changyi Wan2 Hongyu Zhou2 Yimin Jiang3 Yibo Zhu2 Daxin Jiang2

1School of Computer Science, Peking University 2StepFun 3Unaffiliated

Abstract
Reinforcement learning (RL) has become the core post-training
technique for large language models (LLMs). RL for LLMs
involves two stages: generation and training. The LLM first
generates samples online, which are then used to derive re-
wards for training. The conventional view holds that the
colocated architecture—where the two stages share resources
via temporal multiplexing—outperforms the disaggregated
architecture, in which dedicated resources are assigned to
each stage. However, in real-world deployments, we observe
that the colocated architecture suffers from resource cou-
pling, where the two stages are constrained to use the same
resources. This coupling compromises the scalability and
cost-efficiency of colocated RL in large scale training. In
contrast, the disaggregated architecture allows for flexible
resource allocation, supports heterogeneous training setups,
and facilitates cross-datacenter deployment.

StreamRL is designed with disaggregation from first prin-
ciples and fully unlocks its potential by addressing two types
of performance bottlenecks in existing disaggregated RL
frameworks: pipeline bubbles, caused by stage dependencies,
and skewness bubbles, resulting from long-tail output length
distributions. To address pipeline bubbles, StreamRL breaks
the traditional stage boundary in synchronous RL algorithms
through stream generation, and achieves fully overlapping
in asynchronous RL. To address skewness bubbles, StreamRL
employs an output-length ranker model to identify long-tail
samples and reduces generation time via skewness-aware dis-
patching and scheduling. Experiments show that StreamRL
improves throughput by up to 2.66× compared to existing
state-of-the-art systems, and improves cost-effectiveness by
up to 1.33× in heterogeneous, cross-datacenter setting.

1 Introduction
Reinforcement learning (RL) has emerged as a new paradigm
for training large language models (LLMs), substantially im-
proving their reasoning capabilities and revealing a novel
inference-time scaling law [7, 13, 53]. State-of-the-art models
such as OpenAI o1 [2] and o3 [4], Claude 3.7 Sonnet [6], and
DeepSeek-R1 [13] have all adopted RL to achieve leading
performance in tasks such as coding and mathematics.

Gen Gen

TrainTrain

Gen

Gen

Train

Train
Context Switch

Communication

Gen Train

Gen Train

(a) Disaggregated Architecture

(b) Colocated Architecture

Figure 1. Two representative RL framework architectures.
In contrast to traditional next-token prediction [10, 11,

32, 45, 46] in pre-training, RL enables the LLMs to learn
by trial and error from reward signals. While numerous
RL algorithms exist, such as PPO [36] and GRPO [37], the
typical RL workflow for LLMs involves two main stages in
serial: generation and training. In generation stage, the LLM
produces samples on a batch of given prompts, followed by
the training stage that updates the LLM based on rewards
derived from the generated samples.

Due to this two-stage workflow, initial RL training frame-
works for LLMs, such as OpenRLHF [19] and NeMo [18],
naturally adopted a disaggregated architecture. As depicted
in Figure 1(a), dedicated computational resources are allo-
cated for each stage separately. The generation stage employs
existing inference frameworks like vLLM [23] to generate
samples, which are subsequently transferred to the training
stage that uses training frameworks like DeepSpeed [8] or
Megatron-LM [41]. Updated model weights are then trans-
ferred back to the inference framework for the next iteration
generation. This architectural choice can effectively reuse
existing infrastructures and facilitate rapid deployment of
various RL algorithms, which gains broad initial adoption.
However, a notable drawback of disaggregated architecture
is resource idleness arising from serial dependency: GPU
resources allocated to the training stage remain idle during
the generation stage, and vice versa.
To address this inefficiency, recent RL training frame-

works, such as verl [38], ReaL [28], and RLHFuse [59], have
adopted a colocated architecture. As illustrated in Figure 1(b),
it colocates the generation and training stages on the same
GPU resources. When one stage is active, the states of the
other stage (such as model weights and optimizer states) is

1

ar
X

iv
:2

50
4.

15
93

0v
1

 [
cs

.L
G

]
 2

2
A

pr
 2

02
5

temporarily stored in CPU memory. Context switching hap-
pens between stage boundary, enabling time-division multi-
plexing of GPU resources. This architectural shift resolves
the resource idleness issue and improves training efficiency.
Subsequently, colocation becames the prevailing choice and
was widely acknowledged to be superior to disaggregation.

We initially believed the same and chose colocated archi-
tecture for our internal RL framework. However, in practical
deployment, we have observed that the colocated architec-
ture encounters the problem of resource coupling as the train-
ing scales out. The reason lies in that the two stages feature
fundamentally distinct workloads: the generation stage is
notably memory-bandwidth-bound [57], whereas the train-
ing stage is typically compute-bound [22]. However, due to
colocation, both stages must share identical resource quanti-
ties and hardware types, creating an inherent conflict with
their divergent computational characteristics.
Concretely, the performance speedup for the generation

stage reaches a plateau much more quickly compared to the
compute-bound training stage when scaling out resources.
Yet, the colocated architecture restricts resource quantities
for both stages to be identical, thus diminishing overall re-
source utilization. Also, it is unable to select the most suitable
and cost-effective hardware types for each stage respectively.
Moreover, constrained by factors such as policy, cost, and
power supply, constructing a single large-scale datacenter
can be challenging and expensive [1]. Consequently, com-
panies typically operate multiple medium-sized datacenters
equipped with GPUs spanning different generations and
types, forming a cross-datacenter heterogeneous resource
pool [3]. As RL training scales out, the colocated architecture
struggles to efficiently leverage this entire resource pool, as
the training stage typically involves full-mesh communica-
tion operations [42], which will incur significant communi-
cation overhead across datacenters.
Under such circumstances, the initial disaggregated ar-

chitecture reshines. First, resource quantities for the gen-
eration and training stages need not be identical, allowing
more flexible and efficient resource allocation. Second, it
allows for selecting the most suitable hardware for each
stage, such as adopting more cost-effective inference GPUs
for the generation stage, while using more expensive and
high-performance GPUs exclusively for the training stage.
Moreover, RL features point-to-point data transfer between
the two stages, keeping the communication overhead man-
ageable even across datacenters. By putting the two stages
in separate datacenters, RL training can overcome the con-
straints of a single homogeneous datacenter and fully lever-
age the entire cross-datacenter, heterogeneous resource pool.
Nevertheless, the disaggregated architecture encounters

two challenges in existing frameworks, preventing it from
fully unleashing its potential. The first is the resource idle-
ness as illustrated in Figure 1(a). Naive disaggregation intro-
duces pipeline bubbles due to the serialized execution of the

two stages. The second challenge, irrespective of the under-
lying architecture, stems from the long-tail output length
distribution inherent in LLM inference workload [59]. In the
later phase of generation, only a small number of long-tail
samples remain in the system, leading to severely under-
utilized GPUs. This problem is further exacerbated by the
widespread use of long chain-of-thought generation in mod-
ern RL training for reasoning models [13].

To address the above problems, we present StreamRL, an
RL training framework specifically designed for the disaggre-
gated architecture. The key insight of StreamRL is abstract-
ing the generation and training stages into stream generation
service (SGS) and Trainer, respectively. Trainer submits
generation requests to SGS; once the SGS receives prompts
and starts generation, it returns each completed sample to
Trainer in a stream fashion, allowing any follow-up actions
of Trainer and reducing resource idleness. With streaming,
StreamRL can enhance existing naive solutions such as mini-
batch pipelining [27] to enable more flexible and efficient
concurrent execution of SGS and Trainer, and can achieve
fully overlapping execution under asynchronous RL.
Under this streaming architecture, careful resource allo-

cation between the two stages is necessary to balance their
execution time, otherwise pipeline bubbles may still occur.
StreamRL utilize a profiler-based resource allocation algorithm
to decide the resource allocation before training. Further-
more, some recent progress in reasoning LLMs [13] has wit-
nessed improvements in model capabilities during RL train-
ing as the LLM output lengths increase. Given that the work-
load change sensitivity of the two stages differs, StreamRL
also provides a dynamic resource adjustment mechanism to
elastically maintain balanced execution between the two
stages throughout the training process.
To address the long-tail issue, StreamRL leverages an

output-length ranker model to identify long-tail samples, then
utilizes a skewness-aware scheduling mechanism that selec-
tively allocates resources to long-tail samples and adjusts
the batch size to reduce overall generation latency.

Experiments on various LLMs and real-world dataset show
that StreamRL achieves up to 2.66× throughput compared to
existing state-of-the-art systems, and can further improves
up to 1.33× in cost-effectiveness under heterogeneous, cross-
datacenter setting.

In summary, we make the following contributions:
• We analyze critical scalability and efficiency issues inher-
ent in current colocated RL frameworks, and propose to
revisit the disaggregated architecture.
• We present StreamRL to effectively mitigate pipeline bub-
bles and the long-tail issue to fully unleash the potential
of disaggregated architecture.
• We conduct extensive experiments to evaluate StreamRL’s
performance against current state-of-the-art RL frame-
works and demonstrate its effectiveness in heterogeneous,
cross-datacenter scenarios.

2

2 Background and Motivation
2.1 Background
RL for LLMs.We first explain how key concepts in RL are
applied to LLM training. The LLM to be trained works as
the agent model in the RL semantics, which learns from feed-
back from interactions with the environment. The prompt
represents the initial state in which the agent model resides.
Each token generated by the agent model is treated as an
action, which leads to a new state—namely, the combination
of the prompt and all the generated tokens. The agent model
continues to take actions in each state, autoregressively gen-
erating tokens until completing a sample, which is referred to
as a trajectory or rollout. Subsequently, the reward is derived
from the samples and used to train the agent model.
Concretely, each RL iteration consists of two primary

stages: generation and training. In the generation stage, for
each given prompt, the agent model first processes all the
tokens through one forward pass to generate the first output
token, which is called the prefill phase. It also establishes the
key-value cache [12, 33], which stores per-token intermedi-
ate states. Then, in the decoding phase, the model autoregres-
sively generates subsequent tokens, reusing the key-value
cache to avoid redundant computations. Upon completion,
each prompt, combined with the generated tokens, forms a
single training sample. For sample efficiency, hundreds of
samples are generated in batch for each iteration.

In the training stage, generated samples are scored with re-
ward. Depending on the algorithm, reward computation can
be performed by an additionally trained Reward Model [9]
or by rule-based functions [13]. The latter approach is com-
monly used for tasks with explicit correctness criteria, such
as coding and solving maths problems, and recent research
has demonstrated its effectiveness in improving model’s
reasoning ability [7, 13, 53]. In addition to coarse-grained,
sample-level reward, certain RL algorithms, such as PPO [36],
introduce a Critic Model to provide fine-grained, action-level
reward for each token. In the constrast, other algorithms
like GRPO [37] use approximation strategies to avoid us-
ing Critic Model. To enhance training stability, a Reference
Model—initialized from the before-trained agent model and
remained frozen during training—is used to provide Kullback-
Leibler (KL) divergence regularization. It prevents the agent
model from deviating much during training. The final loss
incorporates both sample- and token-level rewards along
with KL divergence to train the agent model. After updating
parameters, it proceeds to the next iteration’s generation.

LLM Parallelization. To scale up LLM training, several
parallelization techniques have been developed. Data Par-
allelism (DP) involves duplicating the model across devices
and splitting the dataset among them, allowing each replica
to process different portions of data concurrently. After each
training step, gradients must be synchronized among all

8 16 24 32
#GPUs

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Ti

m
e Gen

Train

1K 2K 4K 8K
Sequence Length

0

2

4

6

8

No
rm

al
ize

d
Ti

m
e Gen

Train

Figure 2. The performance sensitivity difference of the gen-
eration and training stage under resource quantities (left)
and sequence length (right).
replicas. Tensor Parallelism (TP) divides individual opera-
tions across multiple GPUs, with each GPU responsible for a
portion of the computation. Due to its high communication
overhead, TP is typically confined to intra-node deployment
where high-speed interconnects like NVLINK are available.
Pipeline Parallelism (PP) splits the model layers into sepa-
rate stages, assigning each to a different device or node. The
input batch is further divided into microbatches, enabling
pipelined execution and full-batch gradient accumulation.
Since each method offers distinct trade-offs, modern train-
ing systems [22, 40] often combine all three approaches to
maximize scalability and efficiency.

2.2 Problems with Colocation
As mentioned in §1, the colocated architecture for RL frame-
work, with its advantage in resource efficiency, appears to
be a better choice. We also held this belief at the outset and
built our internal RL training framework based on colocated
architecture to support the large-scale training of commer-
cial models. However, with real-world deployment over time,
as model size and training scale continues to grow, we found
that the intuitively better colocated architecture began to
reveal its fundamental limitation, i.e., resource coupling.
In the colocated architecture, the generation and train-

ing stages must share the same set of devices. However, the
fundamental issue lies in the fact that these two stages repre-
sent fundamentally different workloads. During the decoding
phase of the generation stage, each sample computes only on
the newly generated token from the previous step, but still
requires access to the full set of model parameters, making
it highly memory-bandwidth-bound. In contrast, the train-
ing stage is compute-bound, as both forward and backward
passes compute over all tokens in the batch simultaneously,
easily saturating the GPU’s compute units. Due to colocation,
both stages must share identical resource quantities and hard-
ware types, creating an inherent conflict with their divergent
computational characteristics.

Resource quantities. Given the workload, we expect the it-
eration time to decrease with more resources. However, due
to the distinct computational characteristics of the genera-
tion and training stages, their scaling sensitivity to resource
quantities differ significantly. We profile the execution la-
tency of each stage under different resources when training

3

H20 H800
BF16 TFLOPS 148 989.5
HBM capacity 96GB 80GB
HBM bandwidth 4TB/s 3.35TB/s
NVLINK bandwidth 900GB/s 400GB/s
Cost per machine [60] 1.00 2.85

Table 1. NVIDIA GPU specifications.

a 7B LLM on a fixed workload with a sequence length of
8192. As shown in the left of Figure 2, generation time quickly
reaches a plateau as resources increase. This is because, being
memory-bandwidth-bound, the generation time is mainly
determined by the overall memory bandwidth. Among paral-
lelism strategies, only increasing the tensor parallelism (TP)
size can effectively increase the overall bandwidth. However,
due to the high communication overhead of TP, it is typi-
cally limited to intra-node where NVLINK are available. As
a result, scaling the resources for generation stage mainly
increases the number of generation instances, i.e., the DP
size, which has limited effect on reducing generation time.
In contrast, since the training stage is compute-bound, it

benefits much more from resource scaling, achieving better
acceleration. The consequence of this difference in scaling
sensitivity is that when scaling up resources, the genera-
tion stage suffers from low resource utilization, as increased
resources do not translate into proportional performance
gains. This issue becomes increasingly prominent as long
chain-of-thought generation grows in importance, leading
to longer model outputs and a rising share of generation
time in the overall iteration time.

Hardware types. Another manifestation of resource cou-
pling lies in hardware selection. As shown in Table 1, differ-
ent NVIDIA GPU types exhibit trade-offs between compute
capability, memory bandwidth and cost. Some GPUs, such
as H20, are specifically designed for memory-bandwidth-
bound workloads like inference, offering even higher HBM
bandwidth and larger HBM capacity than flagship ones like
H800, while costing only about 35% as much. Therefore,
from the perspective of training cost —e.g., throughput per
cost—the colocated architecture prevents selecting the most
cost-effectiveness hardware for each stage.

2.3 Motivations for Disaggregation
In contrast, the initial disaggregated architecture exhibits
several unique advantages that deserves reconsideration.

Flexibility. Under the disaggregated architecture, the re-
source coupling problem mentioned above is immediately
eliminated, allowing dedicated resource allocation tailored
to the distinct workloads of the two stages. Additionally, it
enables selecting the most suitable hardware for each stage,
flexibly leveraging heterogeneous resources to improve train-
ing cost and overall cost-effectiveness.

Scalability. Due to various constraints, many organizations
operate multiple medium-sized datacenters instead of one
monolithic and giant datacenter. As training scales out, As
training scales out, cross-datacenter training becomes in-
creasingly appealing if it is feasible. Traditional LLM train-
ing, however, involves extensive full-mesh communication
operations, imposing high bandwidth demands on network-
ing and making cross-datacenter deployment challenging.
In contrast, the disaggregated RL architecture requires rel-
atively low inter-stage communication. Generated samples
and related metadata are small in size, and although model
weights must be transmitted, they only require point-to-
point transmission instead of full-mesh network topology.
This is well-suited for inter-datacenter dedicated links, mak-
ing cross-datacenter RL training practically feasible rather
than merely theoretical. Furthermore, generation instances
are entirely independent, allowing them to be distributed
across multiple datacenters, thus fully utilizing the entire
resource pool and scaling out.

2.4 Challenges for Disaggregation
Although the disaggregated architecture seems natural and
promising for the two-stage RL workflow, fully unlocking its
potential and surpassing the performance of existing colo-
cated architectures requires addressing several challenges.
As shown in Figure 3, the training timeline under naive dis-
aggregation reveals two types of bubbles that lead to GPU
under-utilization.

Pipeline bubbles. This is the primary source of inefficiency
in existing disaggregated frameworks. The generation stage
sends samples to the training stage only after all samples
have been generated, during which time the resources allo-
cated to the training stage remain idle. Similarly, when the
training stage is active, the generation stage’s resources are
also left unused, waiting for the up-to-date model weights.

Furthermore, traditional LLM training is a relatively static
workload, whereas in RL training, samples are generated
online and thus exhibit dynamic behavior. As noted in the
DeepSeek-R1 technical report [13], the LLM will sponta-
neously increase its generation length over time, enhancing
its reasoning ability through self-reflection—an effect re-
ferred to as inference-time scaling [2, 13]. However, the gener-
ation and training time respond differently to such workload
changes. As shown on the right side of the Figure 2, with
increasing sequence length, generation time grows more
significantly than that of training. This is primarily due to
the enlarged key-value cache size, which, to avoid out-of-
memory (OOM), forces smaller batch sizes during genera-
tion and consequently reduces GPU utilization. To better
address pipeline bubbles under a disaggregated architecture,
it is desirable for the execution time of the two stages to be
closely matched so that some overlapping techniques like
mini-batch pipelining [27] and asynchronous pipelining [27]

4

Gen Gen

TrainTrain

Skewness
Bubbles

Pipeline
Bubbles

Figure 3. Resource waste in disaggregated architecture.

can be applied (§4.1). However, the differing growth in la-
tency under dynamic workloads leads to stage imbalance,
introducing new bubbles.

Skewness bubbles.Another type of bubbles originates from
the RL workload itself. In the generation stage, the output
length has a skewed distribution [58], with only a small
subset being much longer than the majority. As generation
proceeds, only a small set of long-tail samples remain in the
system. This undermines GPU utilization because the decod-
ing phase of generation requires a large batch size—often in
the hundreds—to maintain high throughput for its memory-
bandwidth-bound nature. Making the problem even worse,
under the guidance of inference-time scaling [2, 13], the out-
put length continues to grow, making the skewness bubbles
an urgent problem in real-world deployment.
An engineering workaround [43] is to temporarily store

partially generated long-tail samples in a replay buffer and
generate part of them in each iteration. However, this changes
the original output length distribution and may negatively
impact model quality, introducing a trade-off between accu-
racy and efficiency. Another solution, built upon the colo-
cated architecture, is adopted by RLHFuse [58]. It compacts
the long-tail samples onto a small subset of resources and
uses the freed-up machines to pre-execute part of the train-
ing stage’s work—such as KL divergence computation and
reward derivation—alongside the generation of long-tail sam-
ples, effectively filling the skewness bubbles. However, this
approach is not applicable in the disaggregated architecture,
where the two stages are physically separated.

3 StreamRL Overview
To this end, we present StreamRL, an efficient RL framework
designed with disaggregation from first principle. As shown
in Figure 4, StreamRL abstracts the generation and training
stages into Stream Generation Service (SGS) and Trainer,
respectively. SGS and Trainer are deployed on physically
separate resources, potentially even in different datacenters
connected by a point-to-point link. This architectural design
fully unleashes the benefits of disaggregation discussed in
§2.3, enabling (1) flexible resource allocation, (2) heterogeneous
hardware selection, and (3) cross-datacenter training.

Communication
Channels (§6)

Clusters Config Algorithm Config Workload Statistics

Elastic Adjustment (§4) Resource Allocation (§4)

Stream Generation Service

Skewness-aware Scheduling (§5)

Output Length Ranker (§5)

Trainer

Actor Refer.

RewardCritic

Models Config

Elastic Generation Cluster
…

Training Cluster

Figure 4. StreamRL system architecture.

We first present a high-level overview of the overall work-
flow of StreamRL. Next, we describe in detail our techniques
and designs for addressing pipeline bubbles (§4) and skew-
ness bubbles (§5), as well as the implementation details of
the communication between SGS and Trainer (§6).

Workflow. Given the clusters, models, and algorithm config-
urations, StreamRL first determines how to allocate resources
between SGS and Trainer, as well as which parallelization
strategies to adopt for each.

During training, SGS exposes two external APIs to Trainer:
update(weights) and generate(prompts). Trainer address
pipeline bubbles by adjusting the timing of weights updates
and handling the early streamed-back samples according
to the specific RL algorithms. To address skewness bubbles,
SGS utilizes an output length ranker to identify long-tail
samples. Based on the predictions, it dispatches prompts to
specific generation instances and decides scheduling order
accordingly, effectively mitigating the bottleneck caused by
long-tail samples.

Although the static configuration ensures the balance be-
tween generation and training time at the start of training,
the dynamic nature of RL workloads requires elastic resource
adjustment to maintain close execution time between the
two stages throughout the training process. To achieve this,
SGS continuously monitors Trainer’s execution time. As
the workload evolves and sequence length increases, if the
generation time exceeds the training time by a certain thresh-
old, SGS automatically scales out by increasing its DP size to
maintain dynamic balance in execution time.

4 Tackle Pipeline Bubbles
4.1 Overlapping Design
To address pipeline bubbles, the key is to ensure that the
training stage remains active while generation is ongoing.
Mainstream RL algorithms can generally be categorized into
two types: synchronous and asynchronous, depending on
whether the training samples are generated using the latest
model weights. For each type, we present the current straw-
man solutions and describe how the efficiency of overlapping
can be further improved with the support of streaming.

5

Gen,

Gen,

Train,

(a) Mini-batch Pipelining

(b) Dynamic-batch Pipelining

Gen,

Gen, Gen,

Train, Train,

Gen,

Train,

Gen,

Gen,

Gen,

Train, Train,

Gen,

Gen,

(c) One-step Asynchronous Pipelining
Train, Train,

(d) Fully Asynchronous Pipelining

With
Streaming

Gen,

With
Streaming

Train, Train,

Weights
Comm.

Dependency

Figure 5. How streaming powers existing solutions to better mitigate pipeline bubbles.𝑊𝑖 denotes the parameter version.

Strawman solution 1: Mini-batch pipelining [27]. In
synchronous RL, weights update happens after all samples
have been processed. As shown in Figure 5(a), the samples
can be evenly divided into several mini-batches analagous
to pipeline parallel. Once the number of generated samples
reaches the size of a mini-batch, they are passed to the train-
ing stage for processing. This approach requires manually
setting the mini-batch size: if set too large, it reduces the
effectiveness of overlapping; if too small, it harms training
efficiency. In practice, the mini-batch size is set empirically
to a suitable constant [27]. Nevertheless, due to the long-
tail effect, the sequence lengths of the later mini-batches
gradually increase. As a result, the training of the last few
mini-batches often spill over after generation, creating sig-
nificant pipeline bubbles [27]. Also, due to the imbalance
between mini-batches, it is hard to set the mini-batch size to
avoid idle time in the training stage.

Our solution: Dynamic-batch pipelining. We propose
replacing the current batched generation with stream gen-
eration, where samples are immediately sent to the training
stage as soon as completed. This enables sample-level op-
erations such as Reference Model inference, KL loss com-
putation, and reward calculation to begin without delay. As
shown in Figure 5(b), the training stage can start as soon as
it receives enough samples to saturate the GPUs, enabling
dynamic batching based on the generation speed. This elim-
inates idle time in the training stage except for the first
mini-batch and effectively reduces the bubbles caused by the
last few mini-batches.

Strawman solution 2: One-step asynchronous pipelin-
ing [27]. Essentially, the two stages in synchronous RL still
work on the same batch of samples, so the serialized depen-
dency within each iteration remains, making it impossible to
achieve perfect overlapping. Recently, many works [27, 31,
43, 48] have explored off-policy asynchronous RL, where the
samples used for training are not necessarily generated with

the up-to-date weights, allowing for some extent of staleness.
Existing studies [31, 48] and our experiments 7.4 show that
one-step asynchronous RL for LLMs does not compromise
model performance or convergence.
As shown in Figure 5(c), we can first generate one addi-

tional batch while the training stage processes samples from
the previous iteration, thereby shifting the dependency to
a cross-iteration manner and achieving better overlapping.
However, the issue with this batch-level pipelining is that
each iteration still ends with a global synchronization to
transmit the weights, during which both stages remain idle.
Moreover, due to the dynamic nature of online generation,
there can be fluctuations in generation and training time
across iterations, which are difficult to accurately align with
resource adjustments, resulting in new bubbles.

Our solution: Fully asynchronous pipelining. As shown
in Figure 5(d), the above issues can be resolved with stream-
ing. First, weight transmission can overlap with the training
of the next iteration, since samples from the previous itera-
tion have already been streamed and buffered for training.
Meanwhile, the generation of the current iteration does not
depend on the latest weights, and can also proceed in par-
allel. This removes weight transmission completely from
the critical path. Moreover, even if there are fluctuations in
generation and training time across iterations, as long as
their average speeds are matched and the fluctuation is lim-
ited, no new bubbles will emerge. Note that here we do not
introduce asynchronous samples beyond one step, therefore
the training semantics remain identical to the naive solution.

4.2 Stage Balancing
To achieve better overlapping between SGS and Trainer,
we need to carefully balance the execution times of the two
stages. As a result, deciding the appropriate parallel strate-
gies and number of GPUs for each stage becomes critical for
minimizing overall iteration time.

6

Algorithm 1 Resource Allocation Algorithm.
Input: GPU budget, profiler-based estimation model P,

training workloadW.
Output: GPU allocation for SGS and Trainer (𝑥opt, 𝑦opt).

Single-datacenter: total GPU budget 𝑛
𝑇 ∗ = ∞
for each configuration (𝑥,𝑦) where 𝑥 + 𝑦 ≤ 𝑛 do

𝑇gen = Pgen (𝑥,W), 𝑇train = Ptrain (𝑦,W)
𝑇latency ← max(𝑇gen,𝑇train)
if 𝑇latency < 𝑇 ∗ then

𝑇 ∗ ← 𝑇latency, 𝑥opt, 𝑦opt ← 𝑥,𝑦

end if
end for
return 𝑥opt, 𝑦opt
Cross-datacenter: respective GPU budget𝑚, 𝑛
𝑇gen = P(𝑚,W), 𝑇train = P(𝑛,W)
if 𝑇gen < 𝑇train then

Find 𝑘 s.t. |Pgen (𝑘,W) −𝑇train | achieves minimum.
return 𝑘, 𝑛

else
Find 𝑘 s.t. |Ptrain (𝑘,W) −𝑇gen | achieves minimum.
return𝑚,𝑘

end if

Parallel configuration.Before deciding howmany resources
to allocate to each stage, we first address a subproblem: deter-
mining the optimal execution time of either SGS or Trainer
under a given workload and GPU budget. This essentially
reduces to optimizing the parallel strategy, which is a well-
studied problem for both LLM training [54, 55] and genera-
tion [57]. For Trainer, we adopt a profiler-based approach in-
spired by prior work on automated parallelism [29, 47, 54, 55].
Due to the determinism of DNN execution time [17], we can
accurately model training time under a fixed GPU budget
with minimal profiling. For SGS, generation time depends on
the scheduling strategy during inference [26]. Fortunately,
under our skewness-aware scheduling (§5.3), generation time
is also deterministic for a given workload, allowing us to
model it similarly. Note that we assume access to the RL
workloads. In practice, this can be obtained from samples
generated by recent training iterations or bootstrapped from
samples generated by the LLM prior to training.

Resource allocation. Building on the above strategies, we
can determine the resource allocation for each stage. StreamRL
supports two deployment solutions in production RL train-
ing. The first is single-datacenter deployment, where SGS and
Trainer are colocated within the same datacenter equipped
with homogeneous hardware resources. This is the standard
setup in prior LLM training systems [22, 41]. Also, StreamRL
supports cross-datacenter deployment, leveraging the de-
coupled nature of SGS and Trainer in RL workflows and

placing SGS and Trainer in separate datacenters with het-
erogeneous hardware (e.g., H20 vs. H800). We present the
resource allocation algorithms under two different deploy-
ments as shown in Algorithm 1.

Single-datacenter.We define the number of GPUs allocated
to SGS and Trainer as 𝑥 and 𝑦, respectively. The resource
constraint is 𝑥 + 𝑦 ≤ 𝑛, where 𝑛 denotes the total GPU
budget. To determine the optimal allocation strategy, we
enumerates the allocation configurations. For each case, we
can get the generation and training time respectively using
the aforementioned profiler-based modeling. Then we use
the larger of the two as the estimated latency and selects the
optimal (𝑥,𝑦) pair that minimizes overall iteration time.

Cross-datacenter. For cross-datacenter deployment, let𝑚 and
𝑛 denote the available GPUs in the datacenters for SGS and
Trainer deployment, respectively. The resource constraints
are 𝑥 ≤ 𝑚 and 𝑦 ≤ 𝑛, making 𝑥 and 𝑦 independent variables.
A naive choice is (𝑥,𝑦) = (𝑚,𝑛), which fully utilizes all the
resources in both datacenters. However, since iteration time
is determined by the slower stage of SGS and Trainer, such
full allocation may lead to resource waste. To address this,
we identify the faster stage under full allocation and gradu-
ally reduce its GPU usage until both stages achieve similar
execution times. This strategy eliminates unnecessary GPU
usage, allowing surplus resources to be reallocated to other
jobs within the respective datacenter.

Dynamic adjustment. The above techniques only ensure
that the two stages are balanced at the beginning of training.
As observed in the DeepSeek-R1 technical report [13], the
generation length of LLMs increases progressively during RL
training, leading to evolving compute and memory demands
for both SGS and Trainer stages. Unfortunately, the two
stages exhibit different sensitivities to workload changes
in terms of latency. To address this, we propose a dynamic
adjustment mechanism that monitors the execution time gap
between generation and training, denoted as 𝛿 . As shown
in Figure 2, generation time increases faster than training,
which means 𝛿 will gradually increase as training proceeds.

Ideally, when 𝛿 exceeds a certain threshold, we can rerun
the resource allocation algorithm to rebalance the stages.
However, in practice, all the GPUs in Trainer are tightly
coupled through communication group due to the 3D par-
allelism. Changing the parallel strategy or reallocating re-
sources for Trainer requires restarting the entire training
runtime, which incurs significant overhead. In contrast, gen-
eration instances in SGS are naturally decoupled. Therefore,
StreamRL estimates the reduction in generation time, 𝛿 ′,
achievable by adding one data parallel (DP) unit to SGS. 𝛿 ′
is calculated using the aforementioned profiler and the cur-
rent RL workload. When 𝛿 ≥ 𝛿 ′, adjustment is triggered by
adding one more DP unit to SGS. This reallocation does not
interrupt training, and the overhead is limited to initializing

7

…… BS=32

…… BS=32

BS=64……

(a) Random Dispatching

(b) Skewness-aware Dispatching

Saved
Time

Mixed-batch Interference

Long-tail
Friendly

Efficiency
Friendly

Figure 6. Left: The advantage of skewness-aware dispatch-
ing over random dispatching. Right: The trend of per-token
decoding latency for a 7B LLM profiled on NVIDIA H800
with vLLM [23] as the batch size increases.

the added DP unit, which is negligible relative to the overall
RL training time.

5 Tackle Skewness Bubbles
In this section, we introduce the techniques used by SGS to
tackle skewness bubbles. At a high-level, SGS minimizes the
generation time under given resources. which serves as a
function used by the resource allocation section (§4.2).

5.1 Problems and Opportunities

Problem 1. Existing systems do not differentiate between
long-tail samples and regular samples. To achieve workload
balance, prompts are typically assigned randomly across
generation instances. Figure 6(a) shows an simple example
where the generation DP size is 2, with 2 long-tail samples
whose output length are two times that of the remaining
64 samples. Under the random dispatching strategy, each
generation instance receives one long-tail sample along with
half of the regular samples. This results in significant in-
terference for the long-tail samples during the first half of
generation due to batched inference.
The right side of Figure 6 shows the trend of per-token

decoding latency for a 13Bmodel on anNVIDIAA100 GPU as
the batch size increases. It can be observed that latency grows
slowly before reaching compute-bound, and then increases
almost linearly after that. To improve throughput, existing
systems usually accumulate a sufficiently large batch size
for each instance through random dispatching. However, in
the presence of long-tail samples, this approach not only
slows down their decoding in the early stages but also leads
to extremely low utilization in the later stage, as only a few
long-tail samples remain in the system.

Opportunity 1.With an intuitive understanding of the prob-
lem, we now proceed to the solution. The generation latency
of a sample can be modeled as:

𝑆𝑎𝑚𝑝𝑙𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑃𝑇𝐿(𝐵𝑆) × 𝐿 (1)

where per-token latency (𝑃𝑇𝐿) is a function of batch size
(𝐵𝑆) which can be profiled in advance and 𝐿 is the output

length. It can be observed that the random dispatching strat-
egy balances load merely based on 𝐿, without considering
𝑃𝑇𝐿. For samples with longer 𝐿, we actually prefer to reduce
their 𝑃𝑇𝐿—that is, their 𝐵𝑆—since 𝑃𝑇𝐿 is a monotonically
increasing function of 𝐵𝑆 .
The heuristics for the solution naturally emerge: we can

extract the long-tail samples and assign them to a few dedi-
cated instances with smaller batch sizes, allowing them to
decode at the fastest possible speed and eliminating interfer-
ence caused by batching. Meanwhile, regular samples can
be grouped into large batches to fully utilize GPU resources.
By extending the original one-dimensional load balancing
into a two-dimensional scheme, generation latency can be
effectively reduced, as illustrated in Figure 6(b).

Problem 2. The above approach relies on a key assumption:
that long-tail samples can be identified before generation
begins. However, the output length of LLM generation is
typically regarded as not known a priori.

Opportunity 2. Fortunately, while it is difficult to predict
the exact generation length of each sample, it is possible to
estimate the relative ranks of output lengths [14] with an-
other model. Intuitively, the ranking problem is essentially
a classification problem, as more difficult prompts typically
require more reasoning—i.e., longer output lengths. There-
fore, the ranking model essentially classifies prompts based
on their difficulty. Difficulty is a property inherent to the
prompts themselves, which can be generalized across differ-
ent LLMs, leading to relatively high prediction accuracy. In
contrast, the exact output length is a characteristic of the
LLM itself and is significantly more challenging to predict.
Our experiments (§7.2) show that the top 20% long-tail sam-
ples can be recalled with nearly 90% accuracy, which aligns
well with our hypothesis. Since the generation time is pre-
dominantly bottlenecked by the long-tail samples, accurately
identifying them is sufficient to achieve the majority of the
performance gains compared to the upper bound speedup
where the oracle is available (§7.2).

Next, we detail how the above observations are incorpo-
rated into the design of the output length ranker (§5.2) and
the skewness-aware scheduling (§5.3).

5.2 Output Length Ranker

Method. To train the ranker model, we collect a set of input
prompts along with their corresponding output lengths from
the target LLM. These (prompt, length) pairs can be sourced
from our online inference serving service or generated offline
before training. We then concatenate the prompts with their
corresponding output lengths to form a training dataset. Us-
ing this dataset, we directly perform supervised fine-tuning
(SFT) on a small LLM as the ranker model.

After fine-tuning, the ranker model can take a batch of
prompts as input and estimate their absolute output lengths.

8

Algorithm 2 Skewness-aware Dispatching Algorithm.
Input: Batch of prompts P, estimated lengths L, longtail

threshold 𝛼 , output length distribution D, and 𝑁 genera-
tion instances

Output: Number of DP instances for long-tail and regular
samples respectively.
P ← Sort(P,L, descending)
P𝛼 ← P[: 𝛼 × |P|] ⊲ Long-tail samples
P𝑟 ← P[𝛼 × |P| :] ⊲ Regular samples
𝐿𝛼 ← P90(D), 𝐿𝑟 ← P50(D), 𝐿∗ ←∞
for 𝑁𝑙 , 𝑁𝑟 such that 𝑁𝑙 + 𝑁𝑟 = 𝑁 do

𝐿total_latency ← 𝐿latency (P𝛼 , 𝐿𝛼 , 𝑁𝑙)+𝐿latency (P𝑟 , 𝐿𝑟 , 𝑁𝑟)
if 𝐿total_latency < 𝐿∗ then

𝐿∗ ← 𝐿total_latency, 𝑁 ∗𝑙 ← 𝑁𝑙 , 𝑁 ∗𝑟 ← 𝑁𝑟

end if
end for
return (𝑁 ∗

𝑙
, 𝑁 ∗𝑟)

These estimated lengths are then used to sort the prompts,
producing the final ranking result. Note that the SFT pro-
cess involves predicting absolute lengths. As RL training
progresses and the parameters of the target LLM evolve,
even the same prompt may yield different output lengths.
Therefore, after a period of training, we perform online fine-
tuning of the ranker model using recent generation results,
following the same methodology.

Fortunately, the difficulty of a prompt is an inherent prop-
erty and remains stable. As a result, even if the absolute pre-
dictions drift, the relative ranking produced by the ranker
remains reasonably accurate, reducing the need for frequent
online fine-tuning.

Overhead. One concern is the overhead introduced by the
ranker model. First, the ranker model trains very quickly,
requiring only a few minutes to converge. After training, we
perform a one-time offline preprocessing step on the dataset
used for RL, estimating the actual output length for each
prompt. These estimates serve as the basis for the subsequent
skewness-aware scheduling. Note that this preprocessing
is conducted entirely offline, meaning the ranker model im-
poses no online overhead on the RL training process and
does not affect the original training efficiency.

5.3 Skewness-aware Scheduling
With the help from output length ranker, SGS will receive a
batch of prompts alongwith their estimated output lengths. It
then needs tomake two decisions: determine how to dispatch
the prompts to different generation instances, and decide the
scheduling order within each instance after dispatching.

Dispatching. Given a batch of prompts, we first sort them
by their estimated output lengths from longest to shortest.
With the relative order established, we mark the longest 𝛼%
of them as long-tail samples, where 𝛼 is a hyperparameter;

in practice, setting 𝛼 to 20 yields good results (§7.4). Next,
we need to select 𝑁𝑙 out of 𝑁 generation instances to handle
the long-tail samples, while the remaining 𝑁𝑟 instances are
used for regular samples.
To ensure workload balance, we need an estimate of the

actual workload for the regular and long-tail samples. Here,
we assume access to the output length distribution D of
the LLM to be trained. This workload characteristic can be
derived from recently generated samples during training or
by having the LLM generate a set of samples beforehand
for bootstrapping. We use the P50 and P90 of D to estimate
the average output lengths for regular and long-tail samples,
respectively. Based on this, we extend the sample latency (1)
to estimate the single instance generation latency:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑃𝑇𝐿(𝐵𝑆) × 𝐿𝑎𝑣𝑔 × ⌈
𝑀

𝐵𝑆
⌉ (2)

where 𝐿𝑎𝑣𝑔 is the estimated average output length of the
samples assigned to the instance, depending on whether the
instance processes regular or long-tail samples, and 𝑀 is
the number of prompts assigned to the instance. Ideally, we
would like 𝐵𝑆 = 𝑀 , so that all samples can be processed in a
single round. However, with longer output lengths, a larger
𝐵𝑆 will result in higher key-value cache memory usage, so
𝐵𝑆 is constrained by the GPU memory capacity.

With Equation 2, we can iterate through all (𝑁𝑙 , 𝑁𝑟) config-
urations and find the one that minimizes the generation time.
Algorithm 2 shows the pseudocode for the skewness-aware
dispatching algorithm. After that, the long-tail and regular
samples can be evenly distributed within their respective
instances.

Scheduling Order. As mentioned earlier, 𝐵𝑆 is limited by
key-value cache memory usage, so the number of samples
𝑀 assigned to each instance may exceed the 𝐵𝑆 used dur-
ing generation. In this case, multiple rounds of generation
are required, which introduces the need for deciding the
scheduling order of samples. This problem is a variant of the
𝑃 | |𝐶max (makespan minimization) problem, where 𝑃 denotes
parallel processing units and 𝐶max is the maximum comple-
tion time. In our case, each generation iteration of batch size
𝐵𝑆 is viewed as 𝐵𝑆 parallel processing units. We employ a
well-known greedy algorithm, longest-processing-time-first
(LPT) scheduling [15], to address this problem. Specifically,
samples are assigned to the batch in descending order of their
estimated output lengths. Once a sample is completed, the
sample with the longest remaining output length is added
to the batch. This process continues until all samples are
processed. Prior work [15] has proved that LPT scheduling is
4/3-approximation, i.e., its completion time is at most 4/3×
that of the optimal scheduling.

9

Models # of # of # of Hidden
Layers Q Heads K/V Heads Size

Qwen2.5-7B 28 28 8 3584
Qwen2.5-32B 64 40 8 5120
Qwen2.5-72B 80 64 8 8192

Table 2. LLM specifications.

0 1000 2000 3000 4000 5000 6000
Prompt Len

0

5

10

15

20

De
ns

ity
 (x

1e
-4

)

5000 10000 15000 20000
Output Len

0

5

10

15

20

25

De
ns

ity
 (x

1e
-5

)

Figure 7. The prompt and output length distribution of the
evaluation dataset.

6 Implementation

RL Training Framework. SGS employs an in-house infer-
ence engine implemented in C++ with optimized CUDA ker-
nels, supporting continuous batching [52] to release shorter
samples early and prefix sharing [56] to save key-value cache
usage. Trainer implements 3D parallelism similar to prior
work [22, 28, 41]. To address GPU memory constraints, we
develop dynamic CPU offloading that interleaves the execu-
tion of different models through memory swapping.

Tensor-native RPCLibrary.Conventional distributed com-
puting frameworks [30, 44] typically incur significant seri-
alization and deserialization costs for tensor data transfers.
We developed RL-RPC, a communication framework opti-
mized for efficient data transfer between SGS and Trainer.
The system employs GPU-Direct RDMA for zero-copy ten-
sor transfers, bypassing CPU involvement and eliminating
serialization overhead to minimize communication costs. By
fully leveraging RDMA bandwidth without consuming GPU
SM resources, RL-RPC prevents performance degradation
through overlapping of communication and computation. A
TCP fallback mechanism ensures compatibility across dif-
ferent network environments, including non-RDMA cross-
datacenter connections.

Weights transmission. After trainer-side weights sharding,
StreamRL employs a network-aware transmission engine
to efficiently broadcast weights from Trainer to SGS. The
engine dynamically builds broadcast trees optimized for net-
work topology. In the single-datacenter setting, where both
reside on the same RDMA network, it creates multiple trees
rooted at different DP ranks, load-balancing across trees to
keep all DPs bandwidth-saturated. For cross-datacenter de-
ployment with limited connection bandwidth, only the root
(DP rank 0) sends weights to a desinated SGS DP instance
in the remote datacenter, followed by a local broadcast to
minimizes cross-datacenter traffic.

7 Evaluation
In this section, we evaluate StreamRL with LLMs of different
sizes ranging from 7B to 72B on real-world dataset. First,
we compare the end-to-end performance of StreamRL to
other RL training frameworks under single-datacenter set-
ting (§7.1), and conduct ablation studies to show the effec-
tiveness of our proposed techniques (§7.2). Next, we show
the performance of StreamRL under heterogeneous, cross-
datacenter setting to demonstrate the flexibility and scala-
bility of disaggregated architecture (§7.3). Finally, we pro-
vide training curves to demonstrate that asynchronous RL
achieves comparable performance and convergence to syn-
chronous RL (§7.4).

Testbed. We deploy StreamRL on a H800 cluster with 16
nodes and 128 GPUs. Each node has 8 NVIDIA H800-80GB
GPUs. Nodes are connected by 8 * 200 Gbps RDMA net-
work based on RoCEv2 with rail-optimized topology. For
the heterogeneous and cross-datacenter experiments (§7.3),
we also utilize a cloud-based H20 cluster with 4 nodes and
32 GPUs. Each node has 8 NVIDIA H20-96GB GPUs. Nodes
are connect by 100Gbps TCP network. The H800 and H20
clusters are connected by a 80Gbps dedicated link. Other
specifications between H800 and H20 are listed in Table 1.

Models. We choose Qwen2.5 models [5] ranging from 7B
to 72B, which is a popular base model family used for RL
post-training both in academia and industry. The detailed
model architectures are listed in Table 2.

Dataset. We use an internal CodeMath prompts dataset and
collect responses fromDeepSeek-R1 [13], an open-source, ad-
vanced reasoning model, as ground truth. The distributions
of prompt length and output length in the dataset are shown
in Figure 7. The maximum output length is 20K and the dis-
tribution is very long-tail. To train StreamRL’s output length
ranker model, we split the dataset into training, validation,
and test sets with a ratio of 7:2:1. All performance evaluations
are conducted on samples from the test set. To avoid discrep-
ancies in generation length caused by numerical differences
in underlying runtime across different RL frameworks, we
modify the inference code in all RL frameworks to generate
outputs with the same length following the ground truth
of each prompt. This not only help simulating the long-tail
effects observed in real-world RL training while ensuring a
fair comparison across different RL frameworks.

Settings. We use the PPO algorithm [36] which is widely
used in RL post-training. But note that the effectiveness of
StreamRL does not rely on any specific RL algorithm and can
generalize to others such as GRPO [37]. We set the Actor,
Critic, and Reference Model to the same size. We do not use
an explicit Reward Model but a rule-based verifier to provide
rewards following [13]. We also proportionally scale down
the output lengths by two and four, to simulate the early and
middle stages of RL training, when the output lengths are

10

7B
32GPUs

32B
64GPUs

72B
128GPUs

0

4

8

12

16

20

24

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Max Gen.Len.=5K

7B
32GPUs

32B
64GPUs

72B
128GPUs

0

2

4

6

8

10

12
Max Gen.Len.=10K

7B
32GPUs

32B
64GPUs

72B
128GPUs

0

1

2

3

4

5

6
Max Gen.Len.=20K

verl ColocationRL StreamRL-Sync StreamRL-Async

Figure 8. End-to-end throughput of RL training systems under different sequence length and model size settings.

not yet particularly long. This leads to three datasets, which
we denote as 5K, 10K, and 20K for clarity. In each iteration,
we use a global batch size of 1024 following [38].

Metrics. For the end-to-end experiment, we measure the
sample throughput following [58], which is defined as the
average number of samples processed per second. Under each
setting, we record the sample throughput over 20 consecutive
training iterations after warm-up.

7.1 End-to-end Experiments
We compare the end-to-end performance of StreamRL against
the following baseline frameworks.
• verl [38] is the state-of-the-art open-source RL training
framework and a representative of the colocated architec-
ture. It proposes a hierarchical hybrid programming model
for the RL dataflow and optimizes the parallel strategies of
each model. We choose vLLM [24] as its inference engine
and Megatron-LM [41] as its training backend.
• ColocationRL is our in-house RL training framework based
on a colocated architecture. It shares the same inference
and training backend implementations as StreamRL. We
include this baseline to demonstrate the performance im-
provements brought by disaggregation and our techniques
in §4 and §5, eliminating any unfair comparisons caused
by differences in underlying implementations and other
optimization techniques in LLM generation and training
that are orthogonal to our core contributions.

We do not compare against other open-source frameworks
like OpenRLHF [19] and NeMo [18] which are based on dis-
aggregated architectures, as they have lower throughput
than verl due to resource idleness (§2.2) as reported in [38].
For StreamRL, we show two variants. StreamRL-Sync imple-
ments the synchronous version of PPO, which is the same
as the baselines. StreamRL-Async implements the one-step
asynchronous version to maximize throughput.
Figure 8 presents the end-to-end throughput of various

RL frameworks under different maximum sequence lengths
and model sizes. Compared to verl, StreamRL-Sync achieves
a 1.12×–2.12× speedup, partially attributed to optimizations

Idx Method Normalized
Throughput

1 Colocation Baseline 1.00
2 (1) with skewness-aware scheduling 1.08 (+8%)
3 (2) with disaggregation + streaming 1.23 (+15%)
4 (3) with asynchronous 1.48 (+25%)

Table 3. Throughput improvement breakdown when train-
ing 72B model on the 20K dataset.

in the underlying inference and training framework. Com-
pared to ColocationRL, StreamRL-Sync achieves a 1.06×–
1.41× speedup by leveraging disaggregated stream gener-
ation and skewness-aware scheduling. Under the Coloca-
tion setup, generation is highly memory-bandwidth-bound,
leading to low GPU utilization. In contrast, disaggregation
enables StreamRL-Sync to flexibly and judiciously allocate re-
sources for generation and effectively overlaps the two stages
via streaming, thereby improving GPU utilization. However,
even with streaming, the performance gains from disaggre-
gation are partially offset due to the long-tail distribution
of data and stage dependencies. StreamRL-Async further
addresses these limitations by employing one-step asynchro-
nous training to fully overlap pipeline bubbles, achieving
1.30×–2.66× throughput improvement.

7.2 Ablation Studies

Improvement breakdown. Table 3 shows the detailed im-
provement breakdown of our proposed techniques on the
72B model under the dataset with 20K maximum length.

We observe that (2) skewness-aware scheduling improves
throughput by 8% over ColocationRL, primarily by optimiz-
ing generation time. Using the output length ranker model
to identify long-tail samples, we accelerate their generation
by assigning them dedicated compute resources and smaller
batch sizes. The effectiveness of this skewness-aware sched-
uling depends on the prediction accuracy of the ranker model
for long-tail samples. Table 4 shows the recall rates for dif-
ferent proportions of long-tail samples using models trained

11

Base Model Tail 20% Tail 10% Tail 5%
Qwen2.5-7B 0.87 0.82 0.76
Qwen2.5-3B 0.85 0.79 0.72
Qwen2.5-1.5B 0.81 0.75 0.68

Table 4. Recall rate under different tail rates and basemodels.

7B
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 L
at

en
cy

32B
0.5
0.6
0.7
0.8
0.9
1.0

72B
0.5
0.6
0.7
0.8
0.9
1.0

Random-FIFO StreamRL (Ours) StreamRL + Oracle

Figure 9. Generation time with different scheduling algo-
rithms on various models under the 20K dataset.

with base models of varying sizes. For the longest 20% of
samples, we can achieve the recall rate up to 87%.
How much performance is impacted by the remaining

unpredicted long-tail samples? We compare generation time
under random dispatching and skewness-aware scheduling,
and also evaluate an oracle setting where output lengths are
known in advance as the speedup upper bound. As shown
in Figure 9, we achieve most of the potential gains with our
ranker model. As RL training progresses, the output length
distribution of the LLM evolves. To maintain prediction accu-
racy, we periodically perform online finetuning of the ranker
model using recently generated samples to adapt to the dis-
tribution shift. The convergence time for this training is just
a couple of minutes, which is negligible compared to the
overall RL training time.

Building on skewness-aware scheduling, (3) disaggregated
streaming further improves throughput by 15%, and (4) asyn-
chronous training yields an additional 25% gain. These im-
provements fundamentally stem from the ability of disaggre-
gation to allocate appropriate resources to the generation
stage, thereby increasing its GPU utilization. To convert this
reclaimed utilization into end-to-end speedup, it is necessary
to address pipeline bubbles caused by stage dependencies.
Streaming overlaps part of the bubbles, while asynchronous
training achieves nearly the full overlapping.

Resource allocation. To achieve better overlapping, bal-
ancing the latency of the two stages is also critical. Figure 10
compares the iteration time breakdown under a naive evenly-
split scheme and the ones selected by StreamRL’s resource
allocation algorithm. The number of GPUs used for each
stage is annotated at the top of each bar. As shown, by ad-
justing the parallel strategies and resource allocation, we
achieve well-balanced stage latencies. In asynchronous train-
ing, the iteration time is determined by the slower of the two
stages, so balanced stage latencies directly translate into the
speedup of 1.25×.

To show the effectiveness of the dynamic adjustment algo-
rithm, we deploy StreamRL-Async on 32 GPUs to train the

Evenly Split Ours
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 L
at

en
cy 32

40
32 24

32B/64GPUs

Gen Train

Evenly Split Ours

64

80

64

48

72B/128GPUs

Gen Train

Figure 10. The iteration time breakdown compared between
even resource split and our resource allocation algorithm
when training 32B and 72B model on the 20K dataset.

0 2 4 6 8 10 12 14 16 18 20 22 24
Iterations

-10

0

10

20

30

D
el

ta
 T

im
e

(s
)

0

16

32

48

64

#
G

PU
s

Figure 11. The delta time between the two stages when
training 7B models on 32 GPUs and 10K dataset initially,
then the output length is increased linearly to 20K dataset.

7B model and linearly scale the output length of the dataset
to adjust the maximum output length from 10K to 20K. Fig-
ure 11 shows the delta time between the two stages in each
iteration. As shown, after iteration 10 and 16, StreamRL de-
tects the imbalance and automatically adds one node with 8
GPUs to the SGS stage to restore stage balance.

7.3 Cross-Datacenter and Heterogeneity
As discussed in §2, one promising potential of disaggrega-
tion lies in enabling each stage to utilize the most suitable
hardware resources and supporting cross-datacenter train-
ing. To demonstrate this, we adopt the same settings as the
end-to-end experiment with the 7B model, but move the SGS
of StreamRL into a cloud-based H20 cluster with 32 GPUs.
Trainer is still placed in the H800 cluster. We compare its
performance against the original single datacenter setting.
As shown in Figure 12, with heterogeneous deployment,
StreamRL achieves a 1.23×–1.31× higher throughput nor-
malized by hardware cost. This improvement comes from
the higher cost-efficiency of H20 for generation workloads.
Additionally, the communication overhead introduced by
cross-datacenter communication is small: each iteration only
requires communication during weights updates, and even
for a 72B model, the transmission overhead over a 80 Gbps
dedicated link is less than 10 seconds—under 2% of the total
iteration time.

7.4 Algorithmic Behavior of Asynchronous RL
The effectiveness of asynchronous RL for LLMs has been
observed and validated by several prior works [31, 43, 48]. To
confirm this, we also conduct PPO-based RL training using
Qwen2.5-32B [51] as the base model on an internal dataset.
keeping all other settings the same, Figure 13 shows that the
reward curves of the one-step asynchronous version closely

12

0 4 8 12 16 20 24
Throughput per Cost (samples/s)

5K

10K

20K Cross-Datacenter
(32×H20+16×H800)
Single-Datacenter
(32×H800)

Figure 12. The throughput normalized by the hardware cost
between cross- and single-datacenter deployment.

match that of the synchronous version. This demonstrates
that it is possible to maximize training efficiency through
algorithm-system co-design without compromising model
performance and convergence.

Of course, this case study only empirically verifies the fea-
sibility of asynchronous training for specific LLM tasks; its
generality and theoretical guarantees are beyond the scope of
this paper. Nevertheless, even if one has concerns about the
potential model convergence problem introduced by asyn-
chrony, you can use disaggregation with streaming to im-
prove efficiency without changing the training semantics.

8 Related Work
RL training frameworks. RL training is becoming increas-
ingly important for LLMs to improve their performance and
align their value with humans. To accelerate this process,
various RL training frameworks have been proposed. One
class of frameworks, such as NeMo [18] and OpenRLHF [19],
partitions the GPU cluster into multiple subsets to serve dif-
ferent stages of RL training. They are inefficient as only one
stage can be executed simultaneously, leading to resource
idleness. In contrast, verl [39], RLHFuse [58], ReaL [28], and
PUZZLE [25] colocate different stages on the same GPU pool
to maximize resource utilization. ReaL [28] avoids under-
utilization by parameter reallocation. RLHFuse [58] further
proposes stage fusion to reduce the idleness at the sub-stage
level. PUZZLE [25] proposes lightweight context switching
to reduce the switching overhead. However, they suffers from
the resource coupling problem which is solved by StreamRL.
LLM inference optimizations.Many optimizations have
been proposed to accelerate the LLM inference. They are also
applicable to the generation phase of RL training. ORCA [52]
proposes selective batching to batch requests with different
lengths. vLLM [23] proposes PagedAttention to reduce mem-
ory fragmentation of various requests. FastServe [50] uses
preemptive scheduling to reduce the head-of-line blocking
problem of long requests. Splitwise [34] and DistServe [57]
split the prefill and decoding phases to avoid interference
between them. Similar to StreamRL, they also adopt the idea
of resource disaggregation, but in the context of LLM infer-
ence. LoongServe [49] proposes elastic sequence parallelism
to serve different requests with different degrees of paral-
lelism. They are orthogonal to StreamRL and most of them
are implemented in StreamRL to improve the generation.

0 200 400 600
Iterations

0.25

0.50

0.75

R
ew

ar
d

Va
lu

e

Synchronous
One-step Asynchronous

Figure 13. The reward curves between synchronous and
one-step asynchronous PPO when training a 32B LLM.

LLM training optimizations. LLM training has been exten-
sively studied in the past few years. Tensor parallelism [41],
data parallelism, and pipeline parallelism [20] are widely
used to parallelize the LLM training in different dimensions.
Alpa [55] proposes a unified framework to automatically
search for the optimal parallel strategies. CoDDL [21], Pol-
lux [35], and ElasticFlow [16] elastically adjust the paral-
lelism strategy to adapt to the workload. MegaScale [22]
summarizes various best practices for optimizing ultra-scale
training. StreamRL targets the RL training, where LLM train-
ing is just a single stage of the whole process.

9 Conclusion
In this work, we revisit the disaggregated architecture for
RL training to highlight its promising advantages over the
widely adopted colocation architecture: flexible resource al-
location, support for heterogeneous hardware, and cross-
datacenter scalability. To fully unlock the potential of disag-
gregation, we present StreamRL,which addresses the pipeline
bubbles and skewness-induced inefficiencies present in ex-
isting disaggregated RL frameworks. Experiments show that
StreamRL achieves up to a 2.66× speedup compared to the
current state-of-the-art RL framework. We hope this work
encourages the community to revisit disaggregation and gain
a deeper understanding of its effectiveness.

References
[1] 2024. Distribution of AI training is needed. https://www.

tomshardware.com/tech-industry/artificial-intelligence/microsoft-
azure-cto-claims-distribution-of-ai-training-is-needed-as-ai-
datacenters-approach-power-grid-limits. (2024).

[2] 2024. Introducing OpenAI o1. https://openai.com/index/openai-o3-
mini/. (2024).

[3] 2024. Multi-Datacenter Training. https://semianalysis.com/2024/09/
04/multi-datacenter-training-openais/. (2024).

[4] 2024. OpenAI o3-mini: Pushing the frontier of cost-effective reasoning.
https://openai.com/o1/. (2024).

[5] 2024. Qwen2.5: A Party of Foundation Models! https://qwenlm.github.
io/blog/qwen2.5/. (2024).

[6] 2025. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.
com/news/claude-3-7-sonnet. (2025).

[7] 2025. Seed-Thinking-v1.5: Advancing Superb Reasoning Models with
Reinforcement Learning. https://github.com/ByteDance-Seed/Seed-
Thinking-v1.5. (2025).

[8] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden
Smith, Olatunji Ruwase, et al. 2022. Deepspeed inference: Enabling

13

https://www.tomshardware.com/tech-industry/artificial-intelligence/microsoft-azure-cto-claims-distribution-of-ai-training-is-needed-as-ai-datacenters-approach-power-grid-limits
https://www.tomshardware.com/tech-industry/artificial-intelligence/microsoft-azure-cto-claims-distribution-of-ai-training-is-needed-as-ai-datacenters-approach-power-grid-limits
https://www.tomshardware.com/tech-industry/artificial-intelligence/microsoft-azure-cto-claims-distribution-of-ai-training-is-needed-as-ai-datacenters-approach-power-grid-limits
https://www.tomshardware.com/tech-industry/artificial-intelligence/microsoft-azure-cto-claims-distribution-of-ai-training-is-needed-as-ai-datacenters-approach-power-grid-limits
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://semianalysis.com/2024/09/04/multi-datacenter-training-openais/
https://semianalysis.com/2024/09/04/multi-datacenter-training-openais/
https://openai.com/o1/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://github.com/ByteDance-Seed/Seed-Thinking-v1.5
https://github.com/ByteDance-Seed/Seed-Thinking-v1.5

efficient inference of transformer models at unprecedented scale. arXiv
(2022).

[9] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen,
Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom
Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom
Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt,
Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
SamMcCandlish, Chris Olah, BenMann, and Jared Kaplan. 2022. Train-
ing a Helpful and Harmless Assistant with Reinforcement Learning
from Human Feedback. arXiv preprint arXiv:2204.05862 (2022).

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems (2020).

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling lan-
guagemodeling with pathways. arXiv preprint arXiv:2204.02311 (2022).

[12] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le,
and Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive language
models beyond a fixed-length context. (2019).

[13] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, ShirongMa, PeiyiWang, Xiao Bi,
Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang,
Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, HaochengWang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi
Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige
Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, MiaojunWang, Ming-
ming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji
Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia
Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang
Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu
Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan
Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang,
Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun,
Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying
He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu,
Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang
Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng,
Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren,
Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui
Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng
Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang.
2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning. arXiv preprint arXiv:2501.12948 (2025).

[14] Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, and Hao
Zhang. 2024. Efficient LLM Scheduling by Learning to Rank. (2024).
arXiv:cs.LG/2408.15792 https://arxiv.org/abs/2408.15792

[15] Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies.
SIAM journal on Applied Mathematics (1969).

[16] Diandian Gu, Yihao Zhao, Yinmin Zhong, Yifan Xiong, Zhenhua Han,
Peng Cheng, Fan Yang, Gang Huang, Xin Jin, and Xuanzhe Liu. 2023.
Elasticflow: An elastic serverless training platform for distributed deep
learning. In ACM ASPLOS.

[17] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the BottomUp. InUSENIX
OSDI.

[18] Eric Harper, Somshubra Majumdar, Oleksii Kuchaiev, Li Jason, Yang
Zhang, Evelina Bakhturina, Vahid Noroozi, Sandeep Subramanian,
Koluguri Nithin, Huang Jocelyn, Fei Jia, Jagadeesh Balam, Xuesong
Yang, Micha Livne, Yi Dong, Sean Naren, and Boris Ginsburg. 2025.
NeMo: a toolkit for Conversational AI and Large Language Models.
(2025). https://github.com/NVIDIA/NeMo

[19] Jian Hu, Xibin Wu, Weixun Wang, Dehao Zhang, Yu Cao, et al. 2024.
OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF
Framework. arXiv preprint arXiv:2405.11143 (2024).

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. GPipe: Efficient Training of Giant Neural Networks
using Pipeline Parallelism . In NeurIPS.

[21] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and
KyoungSoo Park. 2021. Elastic Resource Sharing for Distributed Deep
Learning. In USENIX NSDI.

[22] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al.
2024. {MegaScale}: Scaling large language model training to more
than 10,000 {GPUs}. In USENIX NSDI.

[23] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model Serv-
ing with PagedAttention. In Proceedings of the 29th Symposium on
Operating Systems Principles. 611–626.

[24] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles. 611–626.

[25] Kinman Lei, Yuyang Jin, Mingshu Zhai, Kezhao Huang, Haoxing
Ye, and Jidong Zhai. 2024. {PUZZLE}: Efficiently Aligning Large
Language Models through {Light-Weight} Context Switch. In 2024
USENIX Annual Technical Conference (USENIX ATC 24). 127–140.

[26] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,
et al. 2023. AlpaServe: Statistical Multiplexing with Model Parallelism
for Deep Learning Serving. arXiv (2023).

[27] Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak,
Qingyang Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber,
Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. 2025.
DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level. https:
//pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-
14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51.
(2025). Notion Blog.

[28] ZhiyuMei, Wei Fu, Kaiwei Li, GuangjuWang, Huanchen Zhang, and Yi
Wu. 2024. ReaLHF: Optimized RLHF Training for Large LanguageMod-
els through Parameter Reallocation. arXiv preprint arXiv:2406.14088
(2024).

[29] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie,
Hailin Zhang, and Bin Cui. 2022. Galvatron: Efficient transformer
training over multiple gpus using automatic parallelism. In Proceedings
of the VLDB Endowment.

14

https://arxiv.org/abs/cs.LG/2408.15792
https://arxiv.org/abs/2408.15792
https://github.com/NVIDIA/NeMo
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51

[30] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework
for Emerging AI Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18).

[31] Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hos-
seini, Rishabh Agarwal, and Aaron Courville. 2025. Asynchronous
RLHF: Faster and More Efficient Off-Policy RL for Language Models.
International Conference on Learning Representations (ICLR) (2025).

[32] OpenAI. 2023. GPT-4 Technical Report. (2023).
[33] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,

Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast,
extensible toolkit for sequence modeling. arXiv (2019).

[34] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient
generative llm inference using phase splitting. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA). 118–
132.

[35] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In USENIX OSDI.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[37] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song,
Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. 2024.
Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300 (2024).

[38] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang,
Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. 2024. Hy-
bridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256 (2024).

[39] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang,
Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. 2024. verl:
Volcano Engine Reinforcement Learning for LLM. https://github.com/
volcengine/verl. (2024).

[40] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Trainingmulti-
billion parameter language models using model parallelism. arXiv
preprint arXiv:1909.08053 (2019).

[41] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2020. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
(2020).

[42] Chenchen Shou, Guyue Liu, Hao Nie, Huaiyu Meng, Yu Zhou, Yimin
Jiang, Wenqing Lv, Yelong Xu, Yuanwei Lu, Zhang Chen, et al. 2025.
InfinitePOD: Building Datacenter-Scale High-Bandwidth Domain for
LLM with Optical Circuit Switching Transceivers. arXiv preprint
arXiv:2502.03885 (2025).

[43] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng
Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al.
2025. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv
preprint arXiv:2501.12599 (2025).

[44] Pytorch Team. 2025. Torch Distributed RPC Framework. (2025). https:
//pytorch.org/docs/stable/rpc.html

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Neural Information Processing Systems (2017).

[47] Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting
very large models using automatic dataflow graph partitioning. In
EuroSys.

[48] Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and
Kun Shao. 2025. DistRL: An Asynchronous Distributed Reinforce-
ment Learning Framework for On-Device Control Agents. (2025).
arXiv:cs.LG/2410.14803 https://arxiv.org/abs/2410.14803

[49] Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu,
and Xin Jin. 2024. LoongServe: Efficiently Serving Long-context Large
Language Models with Elastic Sequence Parallelism. arXiv preprint
arXiv:2404.09526 (2024).

[50] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu,
and Xin Jin. 2023. Fast distributed inference serving for large language
models. arXiv preprint arXiv:2305.05920 (2023).

[51] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei,
et al. 2024. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115
(2024).

[52] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
{Transformer-Based} Generative Models. In USENIX OSDI.

[53] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo,
Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, et al. 2025.
DAPO: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476 (2025).

[54] Zili Zhang, Yinmin Zhong, Ranchen Ming, Hanpeng Hu, Jianjian Sun,
Zheng Ge, Yibo Zhu, and Xin Jin. 2024. DistTrain: Addressing Model
and Data Heterogeneity with Disaggregated Training for Multimodal
Large Language Models. arXiv preprint arXiv:2408.04275 (2024).

[55] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Au-
tomating Inter- and Intra-Operator Parallelism for Distributed Deep
Learning. In USENIX OSDI.

[56] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff
Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica,
Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. 2024. SGLang:
Efficient Execution of Structured Language Model Programs. (2024).

[57] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. {DistServe}: Disaggregating
prefill and decoding for goodput-optimized large language model serv-
ing. In USENIX OSDI.

[58] Yinmin Zhong, Zili Zhang, Bingyang Wu, Shengyu Liu, Yukun Chen,
Changyi Wan, Hanpeng Hu, Lei Xia, Ranchen Ming, Yibo Zhu, et al.
2025. Rlhfuse: Efficient rlhf training for large language models with
inter-and intra-stage fusion. USENIX NSDI (2025).

[59] Yinmin Zhong, Zili Zhang, Bingyang Wu, Shengyu Liu, Yukun Chen,
Changyi Wan, Hanpeng Hu, Lei Xia, Ranchen Ming, Yibo Zhu, and Xin
Jin. 2024. RLHFuse: Efficient RLHF Training for Large Language Mod-
els with Inter- and Intra-Stage Fusion. (2024). arXiv:cs.LG/2409.13221
https://arxiv.org/abs/2409.13221

[60] Ruidong Zhu, Ziheng Jiang, Chao Jin, Peng Wu, Cesar A. Stuardo,
Dongyang Wang, Xinlei Zhang, Huaping Zhou, Haoran Wei, Yang
Cheng, Jianzhe Xiao, Xinyi Zhang, Lingjun Liu, Haibin Lin, Li-Wen
Chang, Jianxi Ye, Xiao Yu, Xuanzhe Liu, Xin Jin, and Xin Liu. 2025.
MegaScale-Infer: Serving Mixture-of-Experts at Scale with Disag-
gregated Expert Parallelism. (2025). arXiv:cs.DC/2504.02263 https:
//arxiv.org/abs/2504.02263

15

https://github.com/volcengine/verl
https://github.com/volcengine/verl
https://pytorch.org/docs/stable/rpc.html
https://pytorch.org/docs/stable/rpc.html
https://arxiv.org/abs/cs.LG/2410.14803
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/cs.LG/2409.13221
https://arxiv.org/abs/2409.13221
https://arxiv.org/abs/cs.DC/2504.02263
https://arxiv.org/abs/2504.02263
https://arxiv.org/abs/2504.02263

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Problems with Colocation
	2.3 Motivations for Disaggregation
	2.4 Challenges for Disaggregation

	3 StreamRL Overview
	4 Tackle Pipeline Bubbles
	4.1 Overlapping Design
	4.2 Stage Balancing

	5 Tackle Skewness Bubbles
	5.1 Problems and Opportunities
	5.2 Output Length Ranker
	5.3 Skewness-aware Scheduling

	6 Implementation
	7 Evaluation
	7.1 End-to-end Experiments
	7.2 Ablation Studies
	7.3 Cross-Datacenter and Heterogeneity
	7.4 Algorithmic Behavior of Asynchronous RL

	8 Related Work
	9 Conclusion
	References

